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Introduction
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Topological structures in the data provide information.

Millennium Run
10.077.696.000" particles.

1 http://www.mpa-garching.mpg.de/galform/virgo/millennium /poster _half.jpg
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Persistent Homology: observe topological structure with
multi resolutions.
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Persistent Homology: observe topological structure with
multi resolutions.

» Georges Seurat, A Sunday afternoon on the island of La Grande
Jatte (Un dimanche aprés-midi a I'lle de la Grande Jatte)

7/37



Statistic Inference for Topological Data Analysis is explored.

» Introduction to Topological Data Analysis
» Computational Topology: An Introduction (Edelsbrunner, Harer,
2010)
» Topological Data Analysis (Wasserman, 2016)
» An Introduction to Topological Data Analysis: Fundamental and
Practical Aspects for Data Scientists (Chazal, Michel, 2021)
» Statistical Inference for Persistent Homology
» Confidence sets for persistence diagrams (Fasy, Lecci, Rinaldo,
Wasserman, Balakrishnan, Singh, 2014)
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Homology and Persistent Homology
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The number of holes is used to summarize topological
features.

» Geometrical objects:
» AAB,CDEFGHILJKLMOPQRST,UVW,X,
Y, Z 1J

» The number of holes of different dimensions is considered.
1. Bo =# of connected components .
2. 1 =# of loops (holes inside 1-dim sphere) O

P

3. B2 =# of voids (holes inside 2-dim sphere)
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Example : Objects are classified by homologies.

1. Bo =# of connected components .
2. 1 =# of loops (holes inside 1-dim sphere) O

B 0 1 12
1 C,EF,GHILJKLM|ADO,|B
N,S, T,U VW XY,Z P,Q R
2 | - | ||
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Homology of finite sample is different from homology of
underlying manifold, hence it cannot be directly used for the

inference.
» When analyzing data, we prefer robust features where features of the

underlying manifold can be inferred from features of finite samples.
» Homology is not robust:

Underlying circle: Bp=1, B1=1 100 samples: 3, =100, 31 =0
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

Sample, r=0.1

Augmented Set
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

Sample, r=0.5
Sample, r=0.5

r=0.5: 1-dim

hole is formed Augmented Set
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

Sample,r=1

Sample,r=0.5 Sample,r=1

r=0.5: 1-dim r=1: 1-dim hole

hole is formed died Augmented Set
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

Sample,r=0.5 Sample,r=1

D =

r=0.5: 1-dim r=1: 1-dim hole
hole is formed

* 0 dim (components)
& 1 dim (loops)

1- 2(0.51
Death

Persistent Homology
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We rely on the superlevel sets of the kernel density estimator
to extract topological information of the underlying
distribution.

» The kernel density estimator is
1 “ X — X,'
p = — K .
) = g K ()

» We look at superlevel sets of the kernel density estimator as

{xe RY : pp(x) > L}L>O‘
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

level = 0.25

-1.5 05 05 10 15

Super-Level Set
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

level =0.15
level = 0.15

05 10 15

1 |
05 10 15
|

05

'\

-15

-15

-15 05 05 10 15 LN B R B B B |

L=0.15: 1-di 45 05 05 10 15
=0.15: 1-dim
hole is formed Super-Level Set
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

level = 0.15 level=0 level =0

05 10 15
|

05 10 15

05 10 15

05

. -

-1[.5 I -01.5 [ 0.15 1.[0 1?5 -1.5 0.5 05 10 15 15 05 05 10 15
L=0.15: 1-dim L=0: 1-dim hole Super-Level Set
hole is formed died P
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

level = 0.15 level =0

05 10 15

05 10 15
[ |

05

15

T T T 1
05 010 015 020 025
Death

-1[.5((]1.5 [ 0.15 1.[0 15 I -1.5 0.5 05 10 15
L=0.15: 1-dim L=0: 1-dim h

Persistent H |
hole is formed ersistent Homology
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Persistent homology of the underlying manifold can be

inferred from persistent homology of finite samples.

Birth
0.00 0.10 0.20 0.30

Circle

1 T T T 1T 1
0.00 0.10 0.20 0.30
Death

Birth
0.00 0.10 0.20 0.30

100 samples

T T T T 71 1
0.00 0.10 0.20 0.30
Death
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Persistent homology of the underlying manifold can be

inferred from persistent homology of finite samples.

Birth
0.00 0.10 0.20 0.30

Circle

1 T T T 1T 1
0.00 0.10 0.20 0.30
Death

Birth
0.00 0.10 0.20 0.30

150 samples

T T T T 71 1
0.00 0.10 0.20 0.30
Death
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Persistent homology of the underlying manifold can be

inferred from persistent homology of finite samples.

Birth
0.00 0.10 0.20 0.30

Circle

1 T T T 1T 1
0.00 0.10 0.20 0.30
Death

Birth
0.00 0.10 0.20 0.30

200 samples

T T T T 71 1
0.00 0.10 0.20 0.30
Death
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Persistent homology of the underlying manifold can be

inferred from persistent homology of finite samples.

Birth
0.00 0.10 0.20 0.30

Circle

1 T T T 1T 1
0.00 0.10 0.20 0.30
Death

Birth
0.00 0.10 0.20 0.30

500 samples

T T T T 71 1
0.00 0.10 0.20 0.30
Death
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Statistical Inference for Persistent Homology
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Statistically significant homological features can be
distinguished from statistically insignificant ones.

> Confidence sets for persistence diagrams (Fasy, Lecci, Rinaldo,

Birth
0.00 0.10 0.20 0.30

Wasserman, Balakrishnan, Singh, 2014)

Circle

T T T 1T T 1
0.00 0.10 0.20 0.30
Death

Birth
0.00 0.10 0.20 0.30

500 samples

T T T T T 1
0.00 0.10 0.20 0.30
Death
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Bottleneck distance gives a metric on the space of persistent
homology.
Definition

Let Dy, Dy be multiset of points. Bottleneck distance is defined as

Woo (D1, D2) = inf sup [[x — v(x)| o
Y xeD,

where 7 ranges over all bijections from D; to D;.

Circle 100 samples
o o
: iy
o o
N N
< o IS =}
5o 5o
— -
o =}
o o
o o
[} [}
0.00 0.10 0.20 0.30 0.00 0.10 0.20 0.30
Death Death
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition

Let Dy, Dy be multiset of points. Bottleneck distance is defined as

Woo (D1, D) = inf sup || x — y(X)]| oo,
Y xeD,

where « ranges over all bijections from D; to D;.

Birth
0.00 0.10 0.20 0.30

sup [[x=71(x)[|oc = 0.1

x€Dq

[ T T T T T ]
0.00 0.10 0.20 0.30
Death
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition

Let Dy, Dy be multiset of points. Bottleneck distance is defined as

Woo (D1, D) = inf sup || x — y(X)]| oo,
Y xeD,

where « ranges over all bijections from D; to D;.

Birth
0.00 0.10 0.20 0.30

sup |[x—72(x)||cc = 0.15

x€Dy

[ T T T T T ]
0.00 0.10 0.20 0.30
Death
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Bottleneck distance gives a metric on the space of persistent
homology.
Definition

Let Dy, Dy be multiset of points. Bottleneck distance is defined as

Woo (D1, D) = inf sup || x — y(X)]| oo,
Y xeD,

where « ranges over all bijections from D; to D;.

Birth
0.00 0.10 0.20 0.30

infsup [|[x — v(x)|loc = 0.1

x€Dy

[ T T T T T ]
0.00 0.10 0.20 0.30
Death
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Confidence band for persistent homology separates
homological signal from homological noise.

Let Dgm(M) and Dgm(X) be persistent homologies of the manifold M
and the data X, respectively. Given the significance level « € (0,1),
(1 — @) confidence band ¢, = ¢,(X) is a random variable satisfying

P (W (Dgm(M), Dgm(X)) < c,) >1—«a.

Circle 500 samples
o o
(3] (3]
IS o
o o
~N N
5 o 5 o
- -
[} ® 0dim =}
A 1dim
o o
o o
o T T T T T 1 o
0.00 0.10 0.20 0.30 0.00 0.10 0.20 0.30
Death Death
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Confidence band for the persistent homology can be
computed using the bootstrap algorithm.

1. Given a sample X = {xq,...,x,}, compute the kernel density
estimator py,.
2. Draw X* = {x7,...,x}} from X = {x1,...,x,} (with replacement),

and compute 6* = v nh?||p;(x) — pn(x)||sc, Where pj is the density
estimator computed using X*.

3. Repeat the previous step B times to obtain 07,...,0%
4. Compute 2, = inf {q : %Z}il 107 > q) < a}

5. The (1 — ) confidence band for E[pp] is [ﬁh - \/z% , Pn + \/2:? .
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Persistent Homology
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Bottleneck distance can be controlled by the corresponding
distance on functions: Stability Theorem.

Theorem

[Edelsbrunner and Harer, 2010][Chazal, de Silva, Glisse, and Oudot,
2012] Let X be finitely triangulable space and f, g : X — R be two
continuous functions. Let Dgm(f) and Dgm(g) be corresponding
persistence diagrams. Then

Woo(Dgm(f), Dgm(g)) < [|f — &llco-
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Confidence set for the persistent homology is a random set

containing the persistent homology with high probability.

Let Dgm(M) and Dgm(X) be persistent homologies of the manifold M
and the data X, respectively. Given the significance level a € (0, 1),

(1 — «) confidence set {D € Dgm: Wy (Dgm(X), D) < c,} is a
random set satisfying

P(Dgm(M) € {D € Dgm: Wy (Dgm(X), D) <cy})>1—a.

Circle 500 samples
o (=]
(3] (52}
[} <}
o o
N N
< o IS =}
5o 5o
— -
o =}
o o
o o
c T T T T T T 1 [}
0.00 0.10 0.20 0.30 0.00 0.10 0.20 0.30
Death Death
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Confidence band for the persistent homology can be
obtained by the corresponding confidence band for functions.

From Stability Theorem, P (||fy — fx|| < ¢p) > 1 — « implies
IP)(dB(Dgnq(fM)v ng(fX)) S Cn) Z IP)(HfM - fXHoo S Cn) 2 1-— «,

so the confidence band of corresponding functions fj; can be used for
confidene band of persistent homologies Dgm(fy).
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Confidence band for the persistent homology can be
computed using the bootstrap algorithm.

Bootstrap algorithm can be applied to peristent homology.
> for the case of kernel density estimator in Fasy et al. [2014],

» for the case of distance to measure and kernel distance in Chazal

et al. [2014].
Circle 500 samples
o o
(3] (3]
IS o
o o
N N
- -
IS e 0dim IS}
A 1dim
o (=]
o o
o TT T T T T 1 IS
0.00 010 0.0 0.30 0.00 010 0.20 0.30
Death Death
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