Topological Data Analysis and Machine Learning

Jisu KIM

九州大学/서울대 Statistics DS workshop 2025 2025-10-20

Introduction to Topological Data Analysis

Persistent Homology

Application of Topological Data Analysis to Machine Learning

Featurization of Topological Data Analysis using Persistence Landscapes

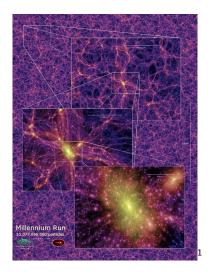
Featurization using Circular Coordinates

Evaluation using Confidence of Topological Data Analysis

R Package TDA: Statistical Tools for Topological Data Analysis

Reference

Topological structures in the data provide information.



 $^{^{1}{\}rm http://www.mpa-garching.mpg.de/galform/virgo/millennium/poster_half.jpg}$

Topological structures are observed in different scales.

Topological structures are observed in different scales.

Topological structures are observed in different scales.

► Georges Seurat, A Sunday afternoon on the island of La Grande Jatte (Un dimanche après-midi à l'Île de la Grande Jatte)

A (very) rough introduction to Machine Learning

- For given problem and data, machine learning / deep learning learns a parametrized model.
 - ► Given data X.
 - ightharpoonup Parametrized model f_{θ} ,
 - ▶ Loss funciton \mathcal{L} adapted to a problem,
 - Machine Learning computes a solution that minimizes the loss function: $\arg \min_{\theta} \mathcal{L}(f_{\theta}, \mathcal{X})$.
- For many cases, computing an explicit formula for the minimizer is impossible or too expensive (e.g. inverting a large matrix). So, we often use gradient descent using $\nabla_{\theta} \mathcal{L}(f_{\theta}, \mathcal{X})$:

$$\theta_{n+1} = \theta_n - \lambda \nabla_{\theta} \mathcal{L}(f_{\theta}, \mathcal{X}).$$

Topological Data Analysis is applied to Machine Learning.

- ► A Survey of Topological Machine Learning Methods (Hensel, Moor, Rieck, 2021)
- Roughly, there are two directions applying Topological Data Analysis (TDA) to Machine Learning:
 - Make features from TDA to add topological features to data X: more common
 - PLLay: Efficient Topological Layer based on Persistence Landscapes (Kim, Kim, Zaheer, Kim, Chazal, Wasserman, 2020)
 - Generalized penalty for circular coordinate representation (Luo, Patania, Kim, Vejdemo-Johansson, 2021)
 - ightharpoonup Evaluate quality of data $\mathcal X$ or model f_θ using TDA: recently of interest
 - TopP&R: Robust Support Estimation Approach for Evaluating Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo, 2024)

Introduction to Topological Data Analysis

Persistent Homology

Application of Topological Data Analysis to Machine Learning

Featurization of Topological Data Analysis using Persistence Landscapes

Featurization using Circular Coordinates

Evaluation using Confidence of Topological Data Analysis

R Package TDA: Statistical Tools for Topological Data Analysis

Reference

The number of holes is used to summarize topological features.

- ► Geometrical objects:
 - ▶ ¬, L, □, □, □, □, 人, O, ス, ネ, ¬, E, Ⅱ, ぉ
 - ► A, あ, い, う, え, お
 - ▶ 서, 울, 대, 九, 州, 大, 学
- ▶ The number of holes of different dimensions is considered.
 - 1. $\beta_0 = \#$ of connected components

- 2. $\beta_1 = \#$ of loops (holes inside 1-dim sphere)
- 3. $\beta_2 = \#$ of voids (holes inside 2-dim sphere) : if $\dim \ge 3$

Example: Objects are classified by homologies.

1. $\beta_0 = \#$ of connected components

2. $\beta_1 = \#$ of loops (holes inside 1-dim sphere)

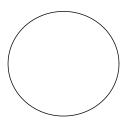
$\beta_0 \setminus \beta_1$	0	1	2
1	つ, ∟, ⊏, ᡓ, 人, ス, ╕, ㅌ, 대, 九, 大	п, о, н, п, А	あ
2	호, 서, い, う, え	울, お	
3		ਰ	
4	学		
6	州		

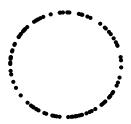
Homology of finite sample is different from homology of underlying manifold, hence it cannot be directly used for the inference.

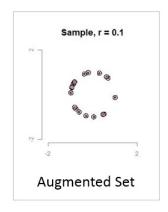
- ▶ When analyzing data, we prefer robust features where features of the underlying manifold can be inferred from features of finite samples.
- ► Homology is not robust:

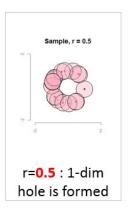
Underlying circle: $\beta_0 = 1$, $\beta_1 = 1$

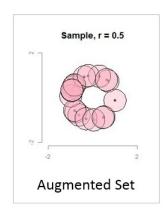
100 samples: $\beta_0 = 100$, $\beta_1 = 0$

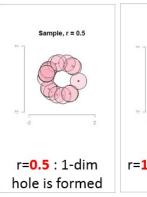


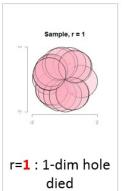


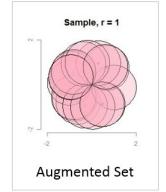


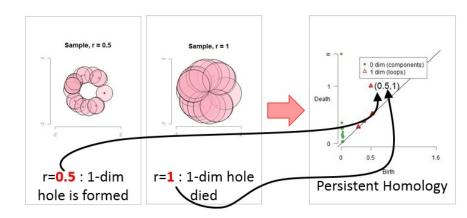












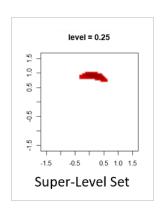
We rely on the superlevel sets of the kernel density estimator to extract topological information of the underlying distribution.

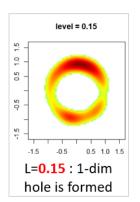
► The kernel density estimator is

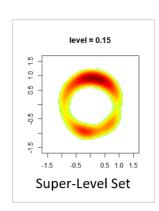
$$\hat{\rho}_h(x) = \frac{1}{nh^d} \sum_{i=1}^n K\left(\frac{x - X_i}{h}\right).$$

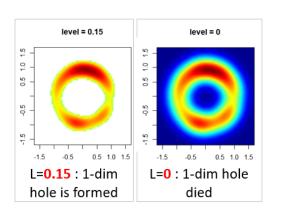
▶ We look at superlevel sets of the kernel density estimator as

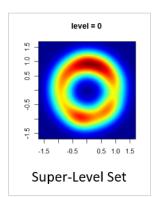
$$\left\{x \in \mathbb{R}^d : \hat{p}_h(x) \geq L\right\}_{L>0}$$
.



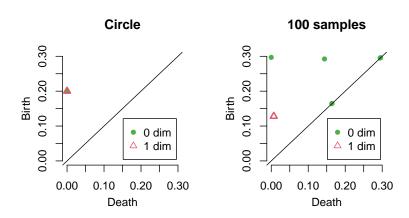


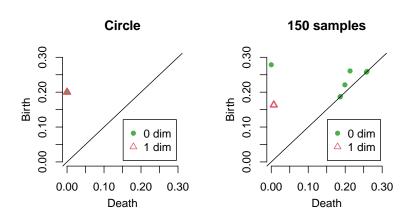


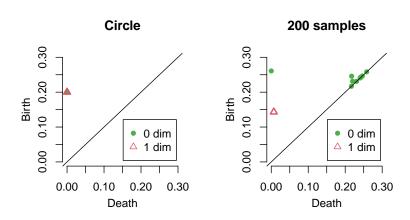


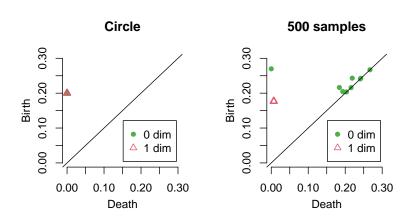




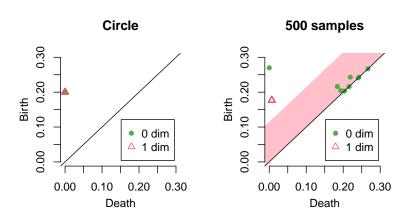








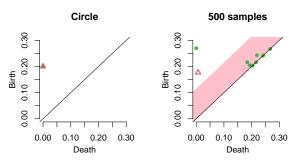
Statistically significant homological features can be distinguished from statistically insignificant ones.



Confidence band for persistent homology separates homological signal from homological noise.

Let Dgm(M) and Dgm(X) be persistent homologies of the manifold M and the data X, respectively. Given the significance level $\alpha \in (0,1)$, $(1-\alpha)$ confidence band $c_n=c_n(X)$ is a random variable satisfying

$$\mathbb{P}(W_{\infty}(Dgm(M), Dgm(X)) \leq c_n) \geq 1 - \alpha.$$



Introduction to Topological Data Analysis

Persistent Homology

Application of Topological Data Analysis to Machine Learning

Featurization of Topological Data Analysis using Persistence Landscapes

Featurization using Circular Coordinates

Evaluation using Confidence of Topological Data Analysis

R Package TDA: Statistical Tools for Topological Data Analysis

Reference

(Very rough) sketch to Machine Learning

- For a given task and data, Machine Learning / Deep Learning fits a parametrized model.
 - Given data X.
 - \triangleright Parametrized model f_{θ} ,
 - ► Loss function £ tailored to the task,
 - ▶ Machine Learning minimizes arg min_{θ} $\mathcal{L}(f_{\theta}, \mathcal{X})$.
- Many cases, getting explicit formula for $\arg\min_{\theta} \mathcal{L}(f_{\theta}, \mathcal{X})$ is impossible or too costly (e.g., inverting a large scale matrix). So, gradient descent is used with the $\nabla_{\theta} \mathcal{L}(f_{\theta}, \mathcal{X})$:

$$\theta_{n+1} = \theta_n - \lambda \nabla_{\theta} \mathcal{L}(f_{\theta}, \mathcal{X}).$$

Application of Topological Data Analysis to Machine Learning

- ► A Survey of Topological Machine Learning Methods (Hensel, Moor, Rieck, 2021)
- Roughly, there are two directions applying Topological Data Analysis (TDA) to Machine Learning:
 - Make features from TDA to add topological features to data X: more common
 - PLLay: Efficient Topological Layer based on Persistence Landscapes (Kim, Kim, Zaheer, Kim, Chazal, Wasserman, 2020)
 - Generalized penalty for circular coordinate representation (Luo, Patania, Kim, Veidemo-Johansson, 2021)
 - ightharpoonup Evaluate quality of data $\mathcal X$ or model f_{θ} using TDA: recently of interest
 - TopP&R: Robust Support Estimation Approach for Evaluating Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo, 2024)

Introduction to Topological Data Analysis

Persistent Homology

Application of Topological Data Analysis to Machine Learning Featurization of Topological Data Analysis using Persistence Landscapes

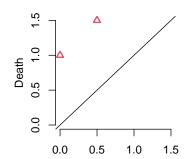
Featurization using Circular Coordinates Evaluation using Confidence of Topological Data Analysis R Package TDA: Statistical Tools for Topological Data Analysis

Reference

Persistent homology is further summarized and embedded into a Euclidean space or a functional space.

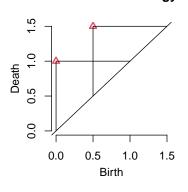
- ► The space of the persistent homology is complex, so directly applying in machine learning is difficult.
- If the persistent homology is further summarized and embedded into a Euclidean space or a functional space, then applying in machine learning becomes much more convenient.
 - e.g., Persistence Landscape, Persistence Silhouette, Persistence Image

Persistent Homology

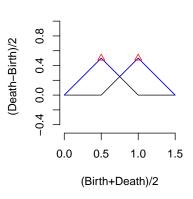


Persistence Landscape is a functional summary of the persistent homology.

Persistent Homology

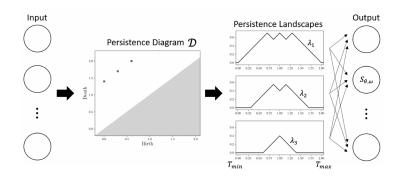


Persistence Landscape

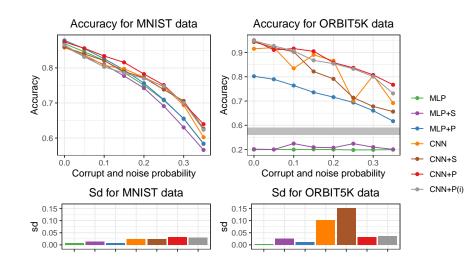


Build topological layer using Persistence Landscape

- 1. From data X, choose an appropriate simplicial complex K and a function f to compute the Persistece diagram \mathcal{D} .
- 2. From the persistence diagram \mathcal{D} , compute the persistence landscape $\lambda:\mathbb{N}\times\mathbb{R}\to\mathbb{R}$.
- 3. Compute the weighted average function $\bar{\lambda}_{\omega}(t) := \sum_{k=1}^{K_{\max}} \omega_k \lambda_k(t)$, and vectorize to get $\bar{\Lambda}_{\omega} \in \mathbb{R}^m$.
- 4. For a parametrized differentiable map $g_{\theta}: \mathbb{R}^m \to \mathbb{R}$, compute $S_{\theta,\omega}(\mathcal{D}) := g_{\theta}(\bar{\Lambda}_{\omega})$.



Build topological layer using Persistence Landscape



Introduction to Topological Data Analysis

Persistent Homology

Application of Topological Data Analysis to Machine Learning

Featurization of Topological Data Analysis using Persistence Landscapes

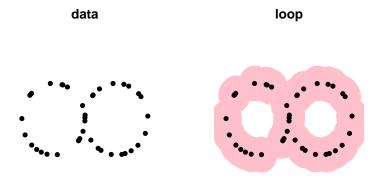
Featurization using Circular Coordinates

Evaluation using Confidence of Topological Data Analysis R Package TDA: Statistical Tools for Topological Data Analysis

Reference

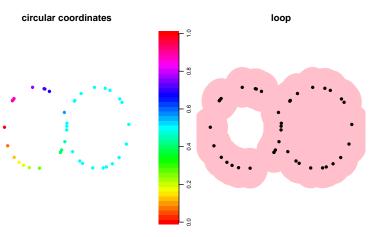
Circular coordinates provide topological representations of reduced dimension.

- ► Persistent cohomology and circular coordinates (de Silva, Morozov, Vejdemo-Johansson, 2011)
- ► Topological Learning for Motion Data via Mixed Coordinates (Vejdemo-Johansson, Pokorny, Skraba, Kragic, 2015)



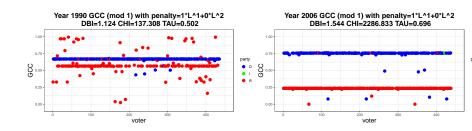
Circular coordinates provide topological representations of reduced dimension.

► circuiar coordinate is a function that maps from data points X to circle S¹.



Circular coordinates with generalized penalty better visualizes topological information from data.

- ► Generalized penalty for circular coordinate representation (Luo, Patania, Kim, Vejdemo-Johansson, 2021)
- ▶ Voting data in 2006 is more bipolarized than voting data in 1990.



Introduction to Topological Data Analysis

Persistent Homology

Application of Topological Data Analysis to Machine Learning

Featurization of Topological Data Analysis using Persistence Landscapes

Featurization using Circular Coordinates

Evaluation using Confidence of Topological Data Analysis

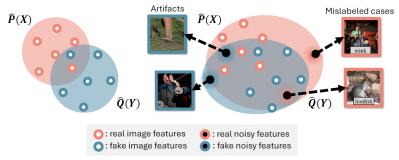
R Package TDA: Statistical Tools for Topological Data Analysis

Reference

Existing evaluation metrics for generative models are vulnerable to noise.

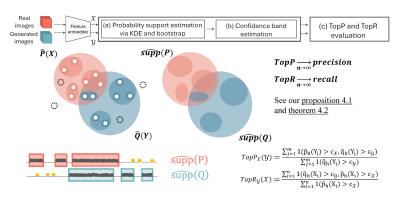
- ▶ TopP&R: Robust Support Estimation Approach for Evaluating Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo, 2024)
- ► To evaluate generative models, metrics compare the support of real image distributions and fake image distributions.
- Existing evaluation metrics tend to overestimate the support of the data distribution: vulnerable to noise

(1) Ideal estimation of distribution (2) Non-ideal estimation of distribution



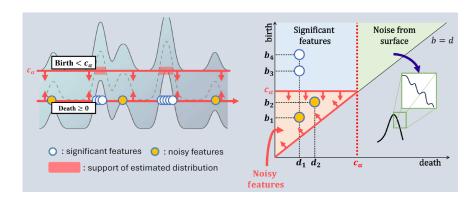
TopP&R robustly evaluates generative models by retaining only topologically and statistically significant features with confidence.

► TopP&R: Robust Support Estimation Approach for Evaluating Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo, 2024)



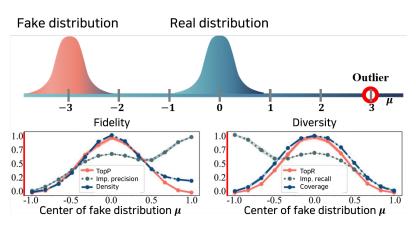
We find threshold c_{α} that selects statistically and topologically significant features.

▶ TopP&R: Robust Support Estimation Approach for Evaluating Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo, 2024)



Experiments

▶ TopP&R: Robust Support Estimation Approach for Evaluating Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo, 2024)



Introduction to Topological Data Analysis

Persistent Homology

Application of Topological Data Analysis to Machine Learning

Featurization of Topological Data Analysis using Persistence Landscapes

Featurization using Circular Coordinates

Evaluation using Confidence of Topological Data Analysis

R Package TDA: Statistical Tools for Topological Data Analysis

Reference

There are many programs for Topological Data Analysis.

There are many programs for Topological Data Analysis: e.g., Dionysus, DIPHA, GUDHI, javaPlex, Perseus, PHAT, Ripser, TDA, TDAstats R Package TDA provides an R interface for C++ libraries for Topological Data Analysis.

- website: https://cran.r-project.org/web/packages/TDA/index.html
- Author: Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clément Maria, David Milman, and Vincent Rouvreau.
- ▶ R is a programming language for statistical computing and graphics.
- R has short development time, while C/C++ has short execution time.
- ▶ R package TDA provides an R interface for C++ library GUDHI/Dionysus/PHAT, which are for Topological Data Analysis.

Introduction to Topological Data Analysis

Persistent Homology

Application of Topological Data Analysis to Machine Learning

Featurization of Topological Data Analysis using Persistence Landscapes

Featurization using Circular Coordinates

Evaluation using Confidence of Topological Data Analysis

R Package TDA: Statistical Tools for Topological Data Analysis

Reference

Reference I

- Peter Bubenik. Statistical topological data analysis using persistence landscapes. arXiv preprint arXiv:1207.6437, 2012.
- Frédéric Chazal, Vin de Silva, Marc Glisse, and Steve Oudot. The structure and stability of persistence modules. *arXiv preprint arXiv:1207.3674*, 2012.
- Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Bertrand Michel, Alessandro Rinaldo, and Larry Wasserman. Robust topological inference: Distance-to-a-measure and kernel distance. *Technical Report*, 2014a.
- Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, and Larry Wasserman. Stochastic convergence of persistence landscapes and silhouettes. In *Annual Symposium on Computational Geometry*, pages 474–483. ACM, 2014b.
- Vin de Silva, Dmitriy Morozov, and Mikael Vejdemo-Johansson. Persistent cohomology and circular coordinates. *Discrete & Computational Geometry*, 45(4):737–759, 2011.

Reference II

H. Edelsbrunner and J. Harer. Computational Topology: An Introduction. Applied mathematics. American Mathematical Society, 2010. ISBN 9780821849255. URL

http://books.google.com/books?id=MDXa6gFRZuIC.

Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivaraman Balakrishnan, and Aarti Singh. Confidence sets for persistence diagrams. *Ann. Statist.*, 42(6):2301–2339, 12 2014. doi: 10.1214/14-AOS1252. URL

http://dx.doi.org/10.1214/14-AOS1252.

Felix Hensel, Michael Moor, and Bastian Rieck. A survey of topological machine learning methods. *Frontiers Artif. Intell.*, 4:681108, 2021. doi: 10.3389/frai.2021.681108. URL

https://doi.org/10.3389/frai.2021.681108.

Kwangho Kim, Jisu Kim, Manzil Zaheer, Joon Sik Kim, Frédéric Chazal, and Larry Wasserman. PLLay: Efficient Topological Layer based on Persistent Landscapes. *arXiv e-prints*, art. arXiv:2002.02778, February 2020.

Reference III

- Pum Jun Kim, Yoojin Jang, Jisu Kim, and Jaejun Yoo. TopP&R: Robust Support Estimation Approach for Evaluating Fidelity and Diversity in Generative Models. *arXiv e-prints*, art. arXiv:2306.08013, June 2024. doi: 10.48550/arXiv.2306.08013.
- Hengrui Luo, Alice Patania, Jisu Kim, and Mikael Vejdemo-Johansson. Generalized penalty for circular coordinate representation. Foundations of Data Science, 3(4):729–767, 2021.
- Mikael Vejdemo-Johansson, Florian T Pokorny, Primoz Skraba, and Danica Kragic. Cohomological learning of periodic motion. *Applicable algebra in engineering, communication and computing*, 26(1):5–26, 2015.

Thank you!

Persistent Homology

Featurization of Topological Data Analysis using Persistence Landscapes

Featurization using Circular Coordinates

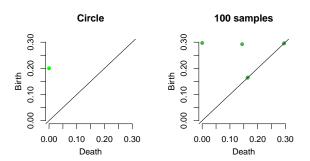
R Package TDA: Statistical Tools for Topological Data Analysis
Sample on manifolds, Distance Functions, and Density Estimators
Persistent Homology and Persistence Landscape
Statistical Inference on Persistence Homology and Persistence
Landscape

Definition

Let D_1 , D_2 be multiset of points. Bottleneck distance is defined as

$$W_{\infty}(D_1, D_2) = \inf_{\substack{\gamma \\ x \in D_1}} \|x - \gamma(x)\|_{\infty},$$

where γ ranges over all bijections from D_1 to D_2 .

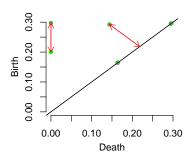


Definition

Let D_1 , D_2 be multiset of points. Bottleneck distance is defined as

$$W_{\infty}(D_1, D_2) = \inf_{\substack{\gamma \\ x \in D_1}} \|x - \gamma(x)\|_{\infty},$$

where γ ranges over all bijections from D_1 to D_2 .



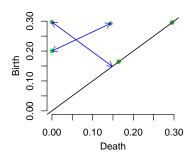
$$\sup_{x \in D_1} \|x - \gamma_1(x)\|_{\infty} = 0.1$$

Definition

Let D_1 , D_2 be multiset of points. Bottleneck distance is defined as

$$W_{\infty}(D_1, D_2) = \inf_{\substack{\gamma \\ x \in D_1}} \|x - \gamma(x)\|_{\infty},$$

where γ ranges over all bijections from D_1 to D_2 .



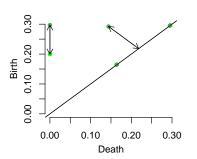
$$\sup_{x \in D_1} \|x - \gamma_2(x)\|_{\infty} = 0.15$$

Definition

Let D_1 , D_2 be multiset of points. Bottleneck distance is defined as

$$W_{\infty}(D_1, D_2) = \inf_{\substack{\gamma \\ x \in D_1}} \|x - \gamma(x)\|_{\infty},$$

where γ ranges over all bijections from D_1 to D_2 .



 $\inf_{\gamma} \sup_{x \in D_1} \|x - \gamma(x)\|_{\infty} = 0.1$

Bottleneck distance can be controlled by the corresponding distance on functions: Stability Theorem.

Theorem

[Edelsbrunner and Harer, 2010][Chazal, de Silva, Glisse, and Oudot, 2012] Let \mathbb{X} be finitely triangulable space and $f, g: \mathbb{X} \to \mathbb{R}$ be two continuous functions. Let Dgm(f) and Dgm(g) be corresponding persistence diagrams. Then

$$W_{\infty}(Dgm(f), Dgm(g)) \leq ||f - g||_{\infty}.$$

Confidence band for the persistent homology can be obtained by the corresponding confidence band for functions.

From Stability Theorem, $\mathbb{P}(||f_M - f_X|| \leq c_n) \geq 1 - \alpha$ implies

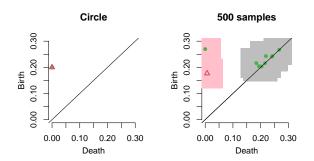
$$\mathbb{P}\left(W_{\infty}(\textit{Dgm}(f_{M}),\,\textit{Dgm}(f_{X})) \leq c_{n}\right) \geq \mathbb{P}\left(||f_{M} - f_{X}||_{\infty} \leq c_{n}\right) \geq 1 - \alpha,$$

so the confidence band of corresponding functions f_M can be used for confidene band of persistent homologies $Dgm(f_M)$.

Confidence set for the persistent homology is a random set containing the persistent homology with high probability.

Let Dgm(M) and Dgm(X) be persistent homologies of the manifold M and the data X, respectively. Given the significance level $\alpha \in (0,1)$, $(1-\alpha)$ confidence set $\{D \in Dgm: W_{\infty}(Dgm(X), D) \leq c_n\}$ is a random set satisfying

$$\mathbb{P}\left(\textit{Dgm}(\textit{M}) \in \{\textit{D} \in \textit{Dgm}: \; \textit{W}_{\infty}(\textit{Dgm}(\textit{X}), \; \textit{D}) \leq \textit{c}_{\textit{n}}\}\right) \geq 1 - \alpha.$$



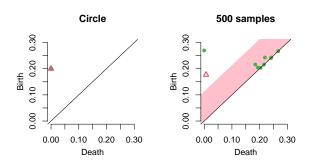
Confidence band for the persistent homology can be computed using the bootstrap algorithm.

- 1. Given a sample $X = \{x_1, \dots, x_n\}$, compute the kernel density estimator \hat{p}_h .
- 2. Draw $X^* = \{x_1^*, \dots, x_n^*\}$ from $X = \{x_1, \dots, x_n\}$ (with replacement), and compute $\theta^* = \sqrt{nh^d}||\hat{p}_h^*(x) \hat{p}_h(x)||_{\infty}$, where \hat{p}_h^* is the density estimator computed using X^* .
- 3. Repeat the previous step B times to obtain $\theta_1^*, \dots, \theta_B^*$
- 4. Compute $\hat{z}_{\alpha} = \inf \left\{ q : \frac{1}{B} \sum_{j=1}^{B} I(\theta_{j}^{*} \geq q) \leq \alpha \right\}$
- 5. The (1 α) confidence band for $\mathbb{E}[\hat{p}_h]$ is $\left[\hat{p}_h \frac{\hat{z}_{\alpha}}{\sqrt{nh^d}}, \, \hat{p}_h + \frac{\hat{z}_{\alpha}}{\sqrt{nh^d}}\right]$.

Confidence band for the persistent homology can be computed using the bootstrap algorithm.

Bootstrap algorithm can be applied to peristent homology.

- ▶ for the case of kernel density estimator in Fasy et al. [2014],
- ▶ for the case of distance to measure and kernel distance in Chazal et al. [2014a].



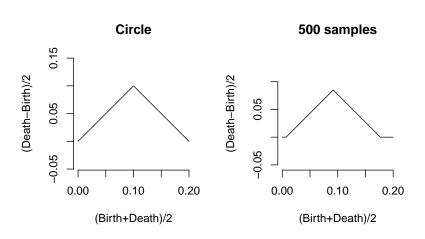
Persistent Homology

Featurization of Topological Data Analysis using Persistence Landscapes

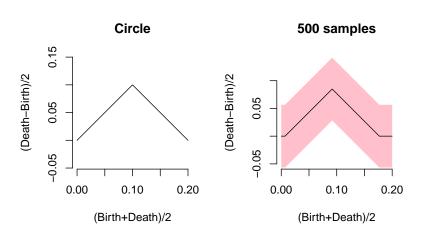
Featurization using Circular Coordinates

R Package TDA: Statistical Tools for Topological Data Analysis
Sample on manifolds, Distance Functions, and Density Estimators
Persistent Homology and Persistence Landscape
Statistical Inference on Persistence Homology and Persistence
Landscape

Persistence Landscape of the underlying manifold can be inferred from Persistence Landscape of finite samples.



Confidence band for persistent homology quantifies the randomness of the persistence landscape.

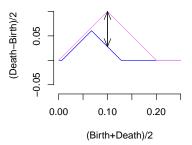


 ∞ -landscape distance gives a metric on the space of persistence landscapes.

Definition

[Bubenik, 2012]Let D_1 , D_2 be multiset of points, and λ_1 , λ_2 be corresponding persistence landscapes. ∞ -landscape distance is defined as

$$\Lambda_{\infty}(D_1, D_2) = \|\lambda_1 - \lambda_2\|_{\infty}.$$



∞-landscape distance can be controlled by the corresponding distance on functions: Stability Theorem.

Theorem

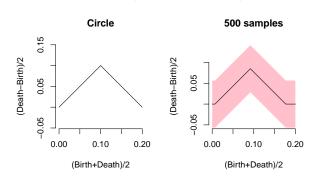
Let $f, g : \mathbb{X} \to \mathbb{R}$ be two functions, and let Dgm(f) and Dgm(g) be corresponding persistent homologies. Then

$$\Lambda_{\infty}(\lambda(f), \lambda(g)) \leq ||f - g||_{\infty}.$$

Confidence band for the persistence landscape can be computed using the bootstrap algorithm.

▶ Let λ_M and λ_X be persistence landscapes of the manifold M and samples X. From Stability Theorem, $\mathbb{P}\left(||f_M - f_X|| \leq c_n\right) \geq 1 - \alpha$ implies

$$\mathbb{P}(\lambda_X(t) - c_n \leq \lambda_M(t) \leq \lambda_X(t) + c_n \, \forall t) \geq \mathbb{P}(||f_M - f_X|| \leq c_n) \geq 1 - \alpha$$
, so the confidence band of corresponding functions f_M can be used for confidence band of the persistence landscape λ_M .



Confidence band for the persistence landscape can be computed using the bootstrap algorithm.

► Confidence band for the persistence landscape can be also computed using multiplier bootstrap; see [Chazal, Fasy, Lecci, Rinaldo, and Wasserman, 2014b].

PLLay is differentiable.

- ► A deep learning model learns its parameters by back propagation, which is to apply gradient descent layer-wise.
- For a deep learning layer to be learnable, it should be differentiable:

Theorem (Theorem 3.1 in Kim et al. [2020])

The PLLay function $S_{\theta,\omega}$ is differentiable with respect to the input data X.

PLLay is stable.

▶ PLLay is stable with respect to changes in persistence diagrams:

Theorem (Theorem 4.1 in Kim et al. [2020])

For two persistence diagrams $\mathcal{D}, \mathcal{D}'$,

$$|S_{ heta,\omega}(\mathcal{D}) - S_{ heta,\omega}(\mathcal{D}')| = O(d_B(\mathcal{D},\mathcal{D}')),$$

where d_B is the bottleneck distance.

PLLay is stable.

▶ PLLay is stable with respect to perturbations in input *X*:

Theorem (Theorem 4.2 in Kim et al. [2020])

Let $X \sim P$ and P_n be the empirical distribution. Further, let $\mathcal{D}_P, \mathcal{D}_X$ be the persistence diagrams of P, X, respectively. Then

$$|S_{\theta,\omega}(\mathcal{D}_X) - S_{\theta,\omega}(\mathcal{D}_P)| = O(W_2(P_n, P)),$$

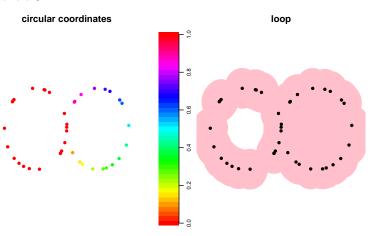
where W₂ is 2-Wasserstein distance.

Featurization of Topological Data Analysis using Persistence Landscapes

Featurization using Circular Coordinates

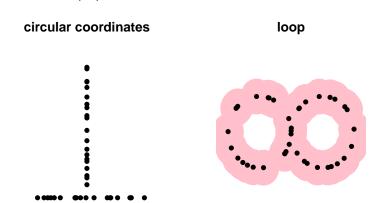
Circular coordinates provide topological representations of reduced dimension.

► circuiar coordinate is a function that maps from data points X to circle S¹.



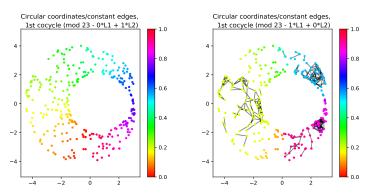
Circular coordinates provide topological representations of reduced dimension.

• circular coordinate is a function that maps from data points X to torus $\mathbb{T}^k = (S^1)^k$.



Circular coordinates with generalized penalty better visualizes topological information from data.

- ► Generalized penalty for circular coordinate representation (Luo, Patania, Kim, Vejdemo-Johansson, 2021)
- ▶ When computing circular coordinates, we solve an optimization problem.
- We switch L_2 loss by L_1 loss for circular coordinate values to change more abructly: better visualizes topological information from data.



Featurization of Topological Data Analysis using Persistence Landscapes

Featurization using Circular Coordinates

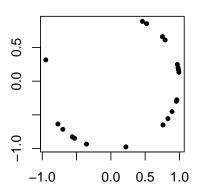
Featurization of Topological Data Analysis using Persistence Landscapes

Featurization using Circular Coordinates

R Package TDA provides a function to sample on a circle.

The function circleUnif() generates n sample from the uniform distribution on the circle in \mathbb{R}^2 with radius r.

```
circleSample <- circleUnif(n = 20, r = 1)
plot(circleSample, xlab = "", ylab = "", pch = 20)</pre>
```



R Package TDA provides distance functions and density functions over a grid.

Suppose n = 400 points are generated from the unit circle, and grid of points are generated.

```
X <- circleUnif(n = 400, r = 1)

lim <- c(-1.7, 1.7)
by <- 0.05
margin <- seq(from = lim[1], to = lim[2], by = by)
Grid <- expand.grid(margin, margin)</pre>
```

R Package TDA provides KDE function over a grid.

The Gaussian Kernel Density Estimator (KDE) $\hat{p}_h : \mathbb{R}^d \to [0, \infty)$ is defined as

$$\hat{\rho}_h(y) = \frac{1}{n(\sqrt{2\pi}h)^d} \sum_{i=1}^n \exp\left(\frac{-\|y-x_i\|_2^2}{2h^2}\right),$$

where h is a smoothing parameter.

The function kde() computes the KDE function \hat{p}_h on a grid of points.

```
h <- 0.3
KDE <- kde(X = X, Grid = Grid, h = h)

par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
persp(x = margin, y = margin,
    z = matrix(KDE, nrow = length(margin), ncol = length(margin)),
    xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
    expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,
    main = "KDE")</pre>
```

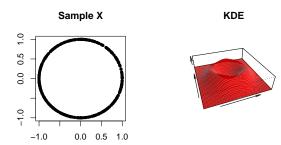
R Package TDA provides KDE function over a grid.

The Gaussian Kernel Density Estimator (KDE) $\hat{p}_h : \mathbb{R}^d \to [0, \infty)$ is defined as

$$\hat{\rho}_h(y) = \frac{1}{n(\sqrt{2\pi}h)^d} \sum_{i=1}^n \exp\left(\frac{-\|y-x_i\|_2^2}{2h^2}\right),$$

where h is a smoothing parameter.

The function kde() computes the KDE function \hat{p}_h on a grid of points.



Featurization of Topological Data Analysis using Persistence Landscapes

Featurization using Circular Coordinates

R Package TDA computes Persistent Homology over a grid.

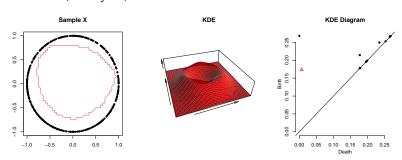
- ► The function gridDiag() computes the persistence diagram of sublevel (and superlevel) sets of the input function.
 - gridDiag() evaluates the real valued input function over a grid.
 - gridDiag() constructs a filtration of simplices using the values of the input function.
 - gridDiag() computes the persistent homology of the filtration.
- ► The user can choose to compute persistent homology using either C++ library GUDHI, Dionysus, or PHAT.

R Package TDA computes Persistent Homology over a grid.

```
DiagGrid <- gridDiag(X = X, FUN = kde, lim = c(lim, lim), by = by,
    sublevel = FALSE, library = "Dionysus", location = TRUE,
    printProgress = FALSE, h = h)
par(mfrow = c(1,3))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
one <- which(DiagGrid[["diagram"]][, 1] == 1)</pre>
for (i in seq(along = one)) {
 for (j in seq_len(dim(DiagGrid[["cycleLocation"]][[one[i]]])[1])) {
   lines(DiagGrid[["cycleLocation"]][[one[i]]][j, , ], pch = 19, cex = 1,
        col = i + 1)
persp(x = margin, y = margin,
 z = matrix(KDE, nrow = length(margin), ncol = length(margin)),
 xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
 expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.9,
 main = "KDE")
plot(x = DiagGrid[["diagram"]], main = "KDE Diagram")
```

R Package TDA computes Persistent Homology over a grid.

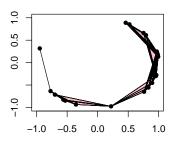
- ➤ The function gridDiag() computes the persistent homology of sublevel (and superlevel) sets of the input function.
 - gridDiag() evaluates the real valued input function over a grid.
 - gridDiag() constructs a filtration of simplices using the values of the input function.
 - gridDiag() computes the persistent homology of the filtration.
- ► The user can choose to compute persistent homology using either GUDHI, Dionysus, or PHAT.



R Package TDA computes Vietoris-Rips Persistent Homology.

▶ Vietoris-Rips complex consists of simplices whose pairwise distances of vertices are at most 2*r* apart, i.e.

$$\operatorname{Rips}(\mathcal{X},r) = \left\{ \left\{ x_1, \dots, x_k \right\} \subset \mathcal{X}: \ d\big(x_i, x_j\big) < 2r, \text{ for all } 1 \leq i,j \leq k \right\}.$$



► Vletoris-Rips filtration is formed by Vietoris-Rips complices with gradually increasing *r*.

R Package TDA computes Vietoris-Rips Persistent Homology.

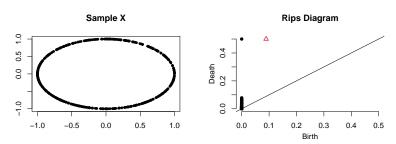
- ► The function ripsDiag() computes the persistence diagram of the Vietoris-Rips filtration built on top of a point cloud.
 - ripsDiag() constructs the Vietoris-Rips filtration using the data points.
 - ripsDiag() computes the persistent homology of the Vietoris-Rips filtration.
- ► The user can choose to compute persistent homology using either C++ library GUDHI, Dionysus, or PHAT.

```
DiagRips <- ripsDiag(X = X, maxdimension = 1, maxscale = 0.5,
    library = c("GUDHI", "Dionysus"), location = TRUE)

par(mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(x = DiagRips[["diagram"]], main = "Rips Diagram")</pre>
```

R Package TDA computes Vietoris-Rips Persistent Homology.

- ► The function ripsDiag() computes the persistence diagram of the Vietoris-Rips filtration built on top of a point cloud.
 - ripsDiag() constructs the Vietoris-Rips filtration using the data points.
 - ripsDiag() computes the persistent homology of the Vietoris-Rips filtration.
- ► The user can choose to compute persistent homology using either C++ library GUDHI, Dionysus, or PHAT.



R Package TDA computes Persistence Landscape.

- Let Λ_p be created by tenting each point $p = (x, y) = \left(\frac{b+d}{2}, \frac{d-b}{2}\right)$ representing a birth-death pair (b, d) in the persistence diagram D.
- ▶ The persistence landscape of *D* is the collection of functions

$$\lambda_k(t) = k \max_{p} \Lambda_p(t), \quad t \in [0, T], k \in \mathbb{N},$$

where k max is the kth largest value in the set.

▶ The function landscape() evaluates the persistence landscape function $\lambda_k(t)$.

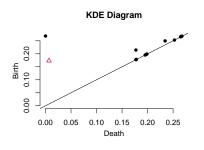
R Package TDA computes Persistence Landscape.

- Let Λ_p be created by tenting each point $p = (x, y) = (\frac{b+d}{2}, \frac{d-b}{2})$ representing a birth-death pair (b, d) in the persistence diagram D.
- ▶ The persistence landscape of *D* is the collection of functions

$$\lambda_k(t) = k \max_{p} \Lambda_p(t), \quad t \in [0, T], k \in \mathbb{N},$$

where $k \max$ is the kth largest value in the set.

▶ The function landscape() evaluates the persistence landscape function $\lambda_k(t)$.



Featurization of Topological Data Analysis using Persistence Landscapes

Featurization using Circular Coordinates

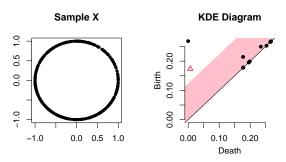
R Package TDA computes the bootstrap confidence band for a function.

The function bootstrapBand() computes $(1 - \alpha)$ bootstrap confidence band for $\mathbb{E}[\hat{p}_h]$.

```
bandKDE <- bootstrapBand(X = X, FUN = kde, Grid = Grid, B = 20,
    parallel = FALSE, alpha = 0.1, h = h)
print(bandKDE[["width"]])
## 90%
## 0.06189347</pre>
```

R Package TDA computes the bootstrap confidence band for the persistent homology.

The $(1 - \alpha)$ bootstrap confidence band for $\mathbb{E}[\hat{p}_h]$ is used as the confidence band for the persistent homology.



R Package TDA computes the bootstrap confidence band for the persistence landscape.

The $(1 - \alpha)$ bootstrap confidence band for $\mathbb{E}[\hat{p}_h]$ is used as the confidence band for the persistence landscape.

R Package TDA computes the bootstrap confidence band for the persistence landscape.

The $(1 - \alpha)$ bootstrap confidence band for $\mathbb{E}[\hat{p}_h]$ is used as the confidence band for the persistence landscape.

