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Introduction to Topological Data Analysis
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Topological structures in the data provide information.
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Topological structures are observed in different scales.







Topological structures are observed in different scales.

» Georges Seurat, A Sunday afternoon on the island of La Grande
tte (Un dimanche aprés-midi a I'lle de la Grande Jatte)




A (very) rough introduction to Machine Learning

» For given problem and data, machine learning / deep learning learns
a parametrized model.
» Given data X,
» Parametrized model fy,
» Loss funciton £ adapted to a problem,
» Machine Learning computes a solution that minimizes the loss
function: arg ming L(fp, X).
» For many cases, computing an explicit formula for the minimizer is
impossible or too expensive (e.g. inverting a large matrix). So, we
often use gradient descent using Vg L(fy, X):

Opi1 = Op — AV L(f5, X).
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Topological Data Analysis is applied to Machine Learning.

> A Survey of Topological Machine Learning Methods (Hensel, Moor,
Rieck, 2021)

» Roughly, there are two directions applying Topological Data Analysis
(TDA) to Machine Learning:
> Make features from TDA to add topological features to data X:
more common
» PLLay: Efficient Topological Layer based on Persistence Landscapes
(Kim, Kim, Zaheer, Kim, Chazal, Wasserman, 2020)
> Generalized penalty for circular coordinate representation (Luo,
Patania, Kim, Vejdemo-Johansson, 2021)
» Evaluate quality of data X or model fy using TDA: recently of
interest
» TopP&R: Robust Support Estimation Approach for Evaluating
Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo,
2024)
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Introduction to Topological Data Analysis

Persistent Homology

Application of Topological Data Analysis to Machine Learning
Featurization of Topological Data Analysis using Persistence
Landscapes
Featurization using Circular Coordinates
Evaluation using Confidence of Topological Data Analysis
R Package TDA: Statistical Tools for Topological Data Analysis
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The number of holes is used to summarize topological
features.

» Geometrical objects:

» 1, L, Cc,2,0,H, A, 0, X, %, 3, E, I,
> A BH W, I, R B
> M, 2, O 1 M, K, =

» The number of holes of different dimensions is considered.

=)

1. PBo =# of connected components .
2. (1 =# of loops (holes inside 1-dim sphere) O

-

3. B2 =# of voids (holes inside 2-dim sphere) : if dim > 3"~
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Example : Objects are classified by homologies.

1. Bo =# of connected components .

2. 1 =# of loops (holes inside 1-dim sphere) O

EAv 9 1 17
el A
\ 2 H =, M, W, 9, A \ 2 b \ \
3 A
4 * | ]
6 M | ]
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Homology of finite sample is different from homology of
underlying manifold, hence it cannot be directly used for the

inference.
» When analyzing data, we prefer robust features where features of the

underlying manifold can be inferred from features of finite samples.
» Homology is not robust:

Underlying circle: Bp=1, B1=1 100 samples: 3, =100, 31 =0
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

Sample, r=0.1

Augmented Set
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

Sample, r=0.5
Sample, r=0.5

r=0.5: 1-dim

hole is formed Augmented Set
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

Sample,r=1

Sample,r=0.5 Sample,r=1

r=0.5: 1-dim r=1: 1-dim hole

hole is formed died Augmented Set
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

Sample,r=0.5 Sample,r=1

D =

r=0.5: 1-dim r=1: 1-dim hole
hole is formed

* 0 dim (components)
& 1 dim (loops)

1- 2(0.51
Death

Persistent Homology
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We rely on the superlevel sets of the kernel density estimator
to extract topological information of the underlying
distribution.

» The kernel density estimator is
1 “ X — X,'
p = — K .
) = g K ()

» We look at superlevel sets of the kernel density estimator as

{xe RY : pp(x) > L}L>O‘
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

level = 0.25

-1.5 05 05 10 15

Super-Level Set
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

level =0.15
level = 0.15

05 10 15

1 |
05 10 15
|

05

'\

-15

-15

-15 05 05 10 15 LN B R B B B |

L=0.15: 1-di 45 05 05 10 15
=0.15: 1-dim
hole is formed Super-Level Set

19/52



Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

level = 0.15 level=0 level =0

05 10 15
|

05 10 15

05 10 15

05

. -

-1[.5 I -01.5 [ 0.15 1.[0 1?5 -1.5 0.5 05 10 15 15 05 05 10 15
L=0.15: 1-dim L=0: 1-dim hole Super-Level Set
hole is formed died P
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

level = 0.15 level =0

05 10 15

05 10 15
[ |

05

15

T T T 1
05 010 015 020 025
Death

-1[.5((]1.5 [ 0.15 1.[0 15 I -1.5 0.5 05 10 15
L=0.15: 1-dim L=0: 1-dim h

Persistent H |
hole is formed ersistent Homology
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Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.

Circle 100 samples
o o
(92] ™
oS <]
o o
N N
= o IS o
5 o 5 g
— —
oS o
o o
S S
o [ I I I I I ] o [ I I I I I ]
0.00 0.10 0.20 0.30 0.00 0.10 0.20 0.30

Death Death
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Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.

Circle 150 samples
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(92] ™
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Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.

Circle 200 samples
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(92] ™
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Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.

Circle 500 samples
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Statistically significant homological features can be
distinguished from statistically insignificant ones.

Circle 500 samples
o o
(92] ™
oS <]
o o
N N
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0.00 0.10 0.20 0.30 0.00 0.10 0.20 0.30

Death Death
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Confidence band for persistent homology separates
homological signal from homological noise.

Let Dgm(M) and Dgm(X) be persistent homologies of the manifold M
and the data X, respectively. Given the significance level « € (0, 1),
(1 — @) confidence band ¢, = ¢,(X) is a random variable satisfying

P (W (Dgm(M), Dgm(X)) < c,) >1—«a.

Circle 500 samples
o o
(3] (3]
IS S e
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Death Death
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Application of Topological Data Analysis to Machine Learning
Featurization of Topological Data Analysis using Persistence
Landscapes
Featurization using Circular Coordinates
Evaluation using Confidence of Topological Data Analysis
R Package TDA: Statistical Tools for Topological Data Analysis
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(Very rough) sketch to Machine Learning

» For a given task and data, Machine Learning / Deep Learning fits a
parametrized model.
» Given data X,
» Parametrized model fy,
» Loss function £ tailored to the task,
» Machine Learning minimizes arg ming L(fs, X).
» Many cases, getting explicit formula for arg ming £(f, X) is
impossible or too costly (e.g., inverting a large scale matrix). So,
gradient descent is used with the Vo L(f, X):

Oni1 = O0n — AVoL(fy, X).
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Application of Topological Data Analysis to Machine
Learning

> A Survey of Topological Machine Learning Methods (Hensel, Moor,
Rieck, 2021)

» Roughly, there are two directions applying Topological Data Analysis
(TDA) to Machine Learning:
» Make features from TDA to add topological features to data X:
more common
» PLLay: Efficient Topological Layer based on Persistence Landscapes
(Kim, Kim, Zaheer, Kim, Chazal, Wasserman, 2020)
> Generalized penalty for circular coordinate representation (Luo,
Patania, Kim, Vejdemo-Johansson, 2021)
» Evaluate quality of data X' or model fy using TDA: recently of
interest
» TopP&R: Robust Support Estimation Approach for Evaluating
Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo,
2024)
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Application of Topological Data Analysis to Machine Learning
Featurization of Topological Data Analysis using Persistence
Landscapes
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Persistent homology is further summarized and embedded

into a Euclidean space or a functional space.

» The space of the persistent homology is complex, so directly
applying in machine learning is difficult.
» If the persistent homology is further summarized and embedded into
a Euclidean space or a functional space, then applying in machine
learning becomes much more convenient.

> e.g., Persistence Landscape, Persistence Silhouette, Persistence

Death

0.5

15

1.0

0.0

Image

Persistent Homology

- A

0.0 0.5 1.0 15 32/52



Persistence Landscape is a functional summary of the
persistent homology.

Death

0.5

15

1.0

0.0

Persistent Homology

»

0.0 0.5 1.0 15
Birth

(Death-Birth)/2

-04 00 04 038

Persistence Landscape

I I
0.5 1.0

(Birth+Death)/2

1
15
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Build topological layer using Persistence Landscape

1. From data X, choose an appropriate simplicial complex K and a
function f to compute the Persistece diagram D.

2. From the persistence diagram D, compute the persistence landscape
A:NXxR—=R

3. Compute the weighted average function A, (t) := Z,’fff wiAk(t),
and vectorize to get A, € R™.

4. For a parametrized differentiable map gy : R™ — R, compute

50..(D) = go(As).

Input Output

Persistence Landscapes
@ Persistence Diagram D /\/\\ /7: Q
\ /]
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Build topological layer using Persistence Landscape

Accuracy for MNIST data Accuracy for ORBIT5K data
0.9
0.8
Py > 0.8+
Q 2
g g
8 071 3074 —o- MLP
< < —o— MLP+S
0.61 —o- MLP+P
0.6
0.2 .__.4::.=¢.>. —*= CNN
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 —o- CNN+S
Corrupt and noise probability Corrupt and noise probability - CNN+P
Sd for MNIST data Sd for ORBIT5K data —*= CNN+P()
0.15 0.15
5 0107 < 0.10-
® 0.05 ® 0054
Py p———— ] ] | 0.00+ | |
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Application of Topological Data Analysis to Machine Learning

Featurization using Circular Coordinates
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Circular coordinates provide topological representations of

reduced dimension.
» Persistent cohomology and circular coordinates (de Silva, Morozov,
Vejdemo-Johansson, 2011)
» Topological Learning for Motion Data via Mixed Coordinates
(Vejdemo-Johansson, Pokorny, Skraba, Kragic, 2015)

data loop
[ ) [ S ° o o [ ) [ %S ° o o
o o L Y 4 ) L)
° °
° [ ] ° ° °
° g ° ° O o
° 4 o~ . A [ o~ A
% o ° »® % o ° »®
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Circular coordinates provide topological representations of

reduced dimension.

» circuiar coordinate is a function that maps from data points X to

circle St.
circular coordinates loop
<
L ° ., . * o,
4 4 0 S
L] g L]
L] L] ! o
L]
° s ° & o °
L] L]
e o o © o o°

0.2

0.0
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Circular coordinates with generalized penalty better
visualizes topological information from data.

» Generalized penalty for circular coordinate representation (Luo,
Patania, Kim, Vejdemo-Johansson, 2021)

» Voting data in 2006 is more bipolarized than voting data in 1990.
Year 1990 GCC (mod 1) with penalty=1*L"1+0*L"2

Year 2006 GCC (mod 1) with penalty=1*L"1+0*L"2
DBI=1.124 CHI=137.308 TAU=0.502 DBI=1.544 CHI=2286.833 TAU=0.696

ors =
party

200 300 0 100 200
voter voter
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Application of Topological Data Analysis to Machine Learning

Evaluation using Confidence of Topological Data Analysis
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Existing evaluation metrics for generative models are

vulnerable to noise.

» TopP&R: Robust Support Estimation Approach for Evaluating
Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo,
2024)

» To evaluate generative models, metrics compare the support of real
image distributions and fake image distributions.

» Existing evaluation metrics tend to overestimate the support of the
data distribution: vulnerable to noise

(1) Ideal estimation of distribution (2) Non-ideal estimation of distribution

_ Artifacts Mislabeled cases
P(X) P(X)
oo ® 0 o &
o O (|, » 7
o N 2 o 76
o oY) &

: real image features ® : real noisy features
o: fake image features . : fake noisy features
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TopP&R robustly evaluates generative models by retaining
only topologically and statistically significant features with
confidence.

» TopP&R: Robust Support Estimation Approach for Evaluating

Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo,
2024)

Real X
images Feature

(a) Probability support estimation

_,| (b) Confidence band ‘ | (c) TopP and TopR

Generated Iﬁ —]jebeddey via KDE and bootstrap estimation L. evaluation
images y
PX) supp(P)
TopP — precision
noo
O TopR s recall
‘ &/ See our proposition 4.1
o and theorem 4.2
O -
em supp(Q)

ST 1Bn(Y)) > cx, Gn(Y)) > cy)
-—{ 1— E——— 0 TopPy(Y) = 2= 10n() > cx, an(¥) > cy)

| oo o P S 1@n(Y) > &)
e o Xt 1@ X)) > oy, Pu(Xi) > cx)
ToPRy (0 = == 1 Bn ) > ex)
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We find threshold ¢, that selects statistically and
topologically significant features.
» TopP&R: Robust Support Estimation Approach for Evaluating

Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo,
2024)

'f Significant Noise from
| features :

surface b=d

by QY K&

O :significant features () : noisy features

1 A

: support of estimated distribution .
BB Noisy
features

dl ziz G death
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Experiments

» TopP&R: Robust Support Estimation Approach for Evaluating
Fidelity and Diversity in Generative Models (Kim, Jang, Kim, Yoo,

2024)

Fake distribution Real distribution

Outlier
e |
-3 -2 -1 0 1 2 3
Fidelity Diversity

1.0| 1.0[ @«

0.7, 0.7

0.5 0.5

~&= TopP
0.2 = ®= Imp. precision 0.2 =@+ Imp. recall
0.0 =e= Density 0.0 ) =eo~ Coverage
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

" Center of fake distribution u " Center of fake distribution u
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Application of Topological Data Analysis to Machine Learning

R Package TDA: Statistical Tools for Topological Data Analysis
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There are many programs for Topological Data Analysis.

» There are many programs for Topological Data Analysis: e.g.,

Dionysus, DIPHA, GUDHI, javaPlex, Perseus, PHAT, Ripser, TDA,
TDAstats
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R Package TDA provides an R interface for C++ libraries
for Topological Data Analysis.

> website:
https://cran.r-project.org/web/packages/TDA/index.html

» Author: Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clément
Maria, David Milman, and Vincent Rouvreau.

» R is a programming language for statistical computing and graphics.

» R has short development time, while C/C++ has short execution
time.

» R package TDA provides an R interface for C++ library
GUDHI/Dionysus/PHAT, which are for Topological Data Analysis.
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Introduction to Topological Data Analysis

Persistent Homology

Application of Topological Data Analysis to Machine Learning
Featurization of Topological Data Analysis using Persistence
Landscapes
Featurization using Circular Coordinates
Evaluation using Confidence of Topological Data Analysis
R Package TDA: Statistical Tools for Topological Data Analysis
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Featurization of Topological Data Analysis using Persistence Landscapes
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Bottleneck distance gives a metric on the space of persistent
homology.
Definition

Let Dy, Dy be multiset of points. Bottleneck distance is defined as

Woo (D1, D2) = inf sup [[x — v(x)| o
Y xeD,

where 7 ranges over all bijections from D; to D;.

Circle 100 samples
o o
: iy
o o
N N
< o IS =}
5o 5o
— -
o =}
o o
o o
[} [}
0.00 0.10 0.20 0.30 0.00 0.10 0.20 0.30
Death Death
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition

Let Dy, Dy be multiset of points. Bottleneck distance is defined as

Woo (D1, D) = inf sup || x — y(X)]| oo,
Y xeD,

where « ranges over all bijections from D; to D;.

Birth
0.00 0.10 0.20 0.30

sup [[x=71(x)[|oc = 0.1

x€Dq

[ T T T T T ]
0.00 0.10 0.20 0.30
Death
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition

Let Dy, Dy be multiset of points. Bottleneck distance is defined as

Woo (D1, D) = inf sup || x — y(X)]| oo,
Y xeD,

where « ranges over all bijections from D; to D;.

Birth
0.00 0.10 0.20 0.30

sup |[x—72(x)||cc = 0.15

x€Dy

[ T T T T T ]
0.00 0.10 0.20 0.30
Death
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition

Let Dy, Dy be multiset of points. Bottleneck distance is defined as

Woo (D1, D) = inf sup || x — y(X)]| oo,
Y xeD,

where « ranges over all bijections from D; to D;.

Birth
0.00 0.10 0.20 0.30

infsup [|[x — v(x)|loc = 0.1

x€Dy

[ T T T T T ]
0.00 0.10 0.20 0.30
Death
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Bottleneck distance can be controlled by the corresponding
distance on functions: Stability Theorem.

Theorem

[Edelsbrunner and Harer, 2010][Chazal, de Silva, Glisse, and Oudot,
2012] Let X be finitely triangulable space and f, g : X — R be two
continuous functions. Let Dgm(f) and Dgm(g) be corresponding
persistence diagrams. Then

Woo(Dgm(f), Dgm(g)) < [|f — &llco-

6/44



Confidence band for the persistent homology can be
obtained by the corresponding confidence band for functions.

From Stability Theorem, P (||fy — fx|| < ¢p) > 1 — « implies
P (Woo(Dgm(fu), Dgm(fx)) < ca) > P(||fir — fxlloc < cn) > 1 -,

so the confidence band of corresponding functions fj; can be used for
confidene band of persistent homologies Dgm(fy).
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Confidence set for the persistent homology is a random set

containing the persistent homology with high probability.
Let Dgm(M) and Dgm(X) be persistent homologies of the manifold M
and the data X, respectively. Given the significance level « € (0, 1),
(1 — «) confidence set {D € Dgm: Wy (Dgm(X), D) < c,} is a
random set satisfying

P(Dgm(M) € {D € Dgm: Wy (Dgm(X), D) <cy})>1—a.

Circle 500 samples
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™ [0 R
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Confidence band for the persistent homology can be
computed using the bootstrap algorithm.

1. Given a sample X = {xq,...,x,}, compute the kernel density
estimator py,.
2. Draw X* = {x7,...,x}} from X = {x1,...,x,} (with replacement),

and compute 6* = v nh?||p;(x) — pn(x)||sc, Where pj is the density
estimator computed using X*.

3. Repeat the previous step B times to obtain 07,...,0%
4. Compute 2, = inf {q : %Z}il 107 > q) < a}

5. The (1 — ) confidence band for E[pp] is [ﬁh - \/z% , Pn + \/2:? .
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Confidence band for the persistent homology can be
computed using the bootstrap algorithm.

Bootstrap algorithm can be applied to peristent homology.
> for the case of kernel density estimator in Fasy et al. [2014],

» for the case of distance to measure and kernel distance in Chazal
et al. [2014a].

Circle 500 samples
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Featurization of Topological Data Analysis using Persistence Landscapes
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Persistence Landscape of the underlying manifold can be
inferred from Persistence Landscape of finite samples.

Circle 500 samples
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Confidence band for persistent homology quantifies the
randomness of the persistence landscape.

Circle 500 samples
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oo-landscape distance gives a metric on the space of
persistence landscapes.

Definition
[Bubenik, 2012]Let Dy, D, be multiset of points, and A1 , Ay be
corresponding persistence landscapes. co-landscape distance is defined as

Ao (D1, D2) = [[A1 = Az|oc-

(Death-Birth)/2
0.05

-0.05

[ T T T T 1
0.00 0.10 0.20
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oo-landscape distance can be controlled by the
corresponding distance on functions: Stability Theorem.

Theorem
Let f,g : X — R be two functions, and let Dgm(f) and Dgm(g) be
corresponding persistent homologies. Then

Noo(A(£), M) < IIf — &lloo-
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Confidence band for the persistence landscape can be

computed using the bootstrap algorithm.
> Let Ay and Ax be persistence landscapes of the manifold M and
samples X. From Stability Theorem, P (||fy — fx|| < cn) > 1 -«
implies
P(Ax(t) — cn < Am(t) < Ax(t) + ¢, Vt) > P(||fm — x|| < ) > 1—a
so the confidence band of corresponding functions fyy can be used
for confidene band of the persistence landscape A\y.
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Confidence band for the persistence landscape can be
computed using the bootstrap algorithm.

» Confidence band for the persistence landscape can be also computed
using multiplier bootstrap; see [Chazal, Fasy, Lecci, Rinaldo, and
Wasserman, 2014b].
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PLLay is differentiable.

» A deep learning model learns its parameters by back propagation,
which is to apply gradient descent layer-wise.
» For a deep learning layer to be learnable, it should be differentiable:

Theorem (Theorem 3.1 in Kim et al. [2020])
The PLLay function Sy, is differentiable with respect to the input data
X.
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PLLay is stable.

» PLLay is stable with respect to changes in persistence diagrams:

Theorem (Theorem 4.1 in Kim et al. [2020])

For two persistence diagrams D, D’,
16.(D) = So.,(D")] = O(ds(D, D)),

where dg is the bottleneck distance.
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PLLay is stable.

» PlLLay is stable with respect to perturbations in input X:

Theorem (Theorem 4.2 in Kim et al. [2020])

Let X ~ P and P, be the empirical distribution. Further, let Dp, Dx be
the persistence diagrams of P, X, respectively. Then

50,0 (Dx) — So,u(Dp)| = O(Wa(P,, P)),

where Ws is 2-Wasserstein distance.
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Featurization using Circular Coordinates
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Circular coordinates provide topological representations of

reduced dimension.

» circuiar coordinate is a function that maps from data points X to

circle St.
circular coordinates loop
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Circular coordinates provide topological representations of
reduced dimension.

» circuiar coordinate is a function that maps from data points X to
torus T = (S1)k.

circular coordinates loop
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Circular coordinates with generalized penalty better

visualizes topological information from data.
» Generalized penalty for circular coordinate representation (Luo,
Patania, Kim, Vejdemo-Johansson, 2021)
» When computing circular coordinates, we solve an optimization
problem.
» We switch L; loss by L; loss for circuiar coordinate values to change
more abructly: better visualizes topological information from data.

Circular coordinates/constant edges, Circular coordinates/constant edges,
1st cocycle (mod 23 - 0*L1 + 1*L2) 1st cocycle (mod 23 - 1*L1 + 0*L2)
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R Package TDA: Statistical Tools for Topological Data Analysis
Sample on manifolds, Distance Functions, and Density Estimators
Persistent Homology and Persistence Landscape

Statistical Inference on Persistence Homology and Persistence
Landscape
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R Package TDA: Statistical Tools for Topological Data Analysis
Sample on manifolds, Distance Functions, and Density Estimators
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R Package TDA provides a function to sample on a circle.

The function circleUnif() generates n sample from the uniform
distribution on the circle in R? with radius r.

circleSample <- circleUnif(n = 20, r = 1)

plot(circleSample, xlab = "", ylab = "", pch = 20)
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R Package TDA provides distance functions and density
functions over a grid.

Suppose n = 400 points are generated from the unit circle, and grid of
points are generated.

X <- circleUnif(n = 400, r = 1)
lim <- c(-1.7, 1.7)
by <- 0.05

margin <- seq(from = 1lim[1], to = 1im[2], by = by)
Grid <- expand.grid(margin, margin)

28 /44



R Package TDA provides KDE function over a grid.

The Gaussian Kernel Density Estimator (KDE) pp, : RY — [0, 00) is
defined as

n

Ay 1 —lly = xill3
Pn(y) = W ZeXP <2h2> )

i=1

where h is a smoothing parameter.
The function kde() computes the KDE function pj, on a grid of points.

h <- 0.3
KDE <- kde(X = X, Grid = Grid, h = h)

par (mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
persp(x = margin, y = margin,
z = matrix(KDE, nrow = length(margin), ncol = length(margin)),
xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,
main = "KDE")
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R Package TDA provides KDE function over a grid.

The Gaussian Kernel Density Estimator (KDE) g, : RY — [0, 00) is
defined as

. 1 . —lly —Xi|§>
=———— ) exp| ——=5—2 ),
ph(y) T ; p ( T

where h is a smoothing parameter.
The function kde() computes the KDE function pj, on a grid of points.

Sample X KDE
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R Package TDA: Statistical Tools for Topological Data Analysis

Persistent Homology and Persistence Landscape
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R Package TDA computes Persistent Homology over a grid.

» The function gridDiag() computes the persistence diagram of
sublevel (and superlevel) sets of the input function.
» gridDiag() evaluates the real valued input function over a grid.
» gridDiag() constructs a filtration of simplices using the values of the
input function.
» gridDiag() computes the persistent homology of the filtration.

» The user can choose to compute persistent homology using either
C++ library GUDHI, Dionysus, or PHAT.
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R Package TDA computes Persistent Homology over a grid.

DiagGrid <- gridDiag(X = X, FUN = kde, lim = c(lim, lim), by = by,
sublevel = FALSE, library = "Dionysus", location = TRUE,
printProgress = FALSE, h = h)

par (mfrow = c(1,3))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
one <- which(DiagGrid[["diagram"]1]1[, 1] == 1)
for (i in seq(along = ome)) {
for (j in seq_len(dim(DiagGrid[["cycleLocation"]] [[one[i]]1])[11)) {
lines(DiagGrid[["cycleLocation"]] [[one[i]]]1[j, , 1, pch = 19, cex = 1,
col =i + 1)
}
}
persp(x = margin, y = margin,
z = matrix(KDE, nrow = length(margin), ncol = length(margin)),
xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.9,
main = "KDE")
plot(x = DiagGrid[["diagram"]], main = "KDE Diagram")
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R Package TDA computes Persistent Homology over a grid.

» The function gridDiag() computes the persistent homology of
sublevel (and superlevel) sets of the input function.
» gridDiag() evaluates the real valued input function over a grid.
» gridDiag() constructs a filtration of simplices using the values of the
input function.
» gridDiag() computes the persistent homology of the filtration.

» The user can choose to compute persistent homology using either
GUDHI, Dionysus, or PHAT.
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R Package TDA computes Vietoris-Rips Persistent
Homology.

» Vietoris-Rips complex consists of simplices whose pairwise distances
of vertices are at most 2r apart, i.e.

Rips(X,r) = {{x1,...,x} C X : d(x;,x;) <2r, forall 1 <ij<k}.

0.0 05 1.0

-1.0

-10 -05 00 05 1.0

» Vletoris-Rips filtration is formed by Vietoris-Rips complices with
gradually increasing r. 35/44



R Package TDA computes Vietoris-Rips Persistent
Homology.

» The function ripsDiag() computes the persistence diagram of the
Vietoris-Rips filtration built on top of a point cloud.
» ripsDiag() constructs the Vietoris-Rips filtration using the data
points.
> ripsDiag() computes the persistent homology of the Vietoris-Rips
filtration.

» The user can choose to compute persistent homology using either
C++ library GUDHI, Dionysus, or PHAT.

DiagRips <- ripsDiag(X = X, maxdimension = 1, maxscale = 0.5,
library = c("GUDHI", "Dionysus"), location = TRUE)

par (mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(x = DiagRips[["diagram"]], main = "Rips Diagram")
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R Package TDA computes Vietoris-Rips Persistent
Homology.

» The function ripsDiag() computes the persistence diagram of the
Vietoris-Rips filtration built on top of a point cloud.
» ripsDiag() constructs the Vietoris-Rips filtration using the data
points.
» ripsDiag() computes the persistent homology of the Vietoris-Rips
filtration.
» The user can choose to compute persistent homology using either
C++ library GUDHI, Dionysus, or PHAT.
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R Package TDA computes Persistence Landscape.

> Let A, be created by tenting each point p = (x,y) = (252, %5
representing a birth-death pair (b, d) in the persistence diagram D.

M@)

» The persistence landscape of D is the collection of functions
Ae(t) = kmaxAy(t), te€[0,T), keN,
P

where k max is the kth largest value in the set.

» The function landscape() evaluates the persistence landscape
function Ak(t).

tseq <- seq(0, 0.2, length = 1000)
Land <- landscape(DiagGrid[["diagram"]], dimension = 1, KK

1, tseq = tseq)

par (mfrow = c(1,2))
plot(x = DiagGrid[["diagram"]], main = "KDE Diagram")
plot(tseq, Land, type = "1", xlab = "(Birth+Death)/2",
ylab = "(Death-Birth)/2", asp = 1, axes = FALSE, main = "Landscape")
axis(1); axis(2)
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R Package TDA computes Persistence Landscape.

> Let A, be created by tenting each point p = (x,y) = (254, 452)
representing a birth-death pair (b, d) in the persistence diagram D.

» The persistence landscape of D is the collection of functions

Ae(t) = kmaxAy(t), te€[0,T) k€N,
p

where k max is the kth largest value in the set.

» The function landscape() evaluates the persistence landscape
function Ak(t).
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R Package TDA: Statistical Tools for Topological Data Analysis

Statistical Inference on Persistence Homology and Persistence
Landscape
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R Package TDA computes the bootstrap confidence band
for a function.

The function bootstrapBand() computes (1 — ) bootstrap confidence
band for E[pp].

bandKDE <- bootstrapBand(X = X, FUN = kde, Grid = Grid, B = 20,
parallel = FALSE, alpha = 0.1, h = h)
print (bandKDE[["width"]1])

## 90%
## 0.06189347
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R Package TDA computes the bootstrap confidence band

for the persistent homology.

The (1 — «) bootstrap confidence band for E[p,] is used as the
confidence band for the persistent homology.

par (mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(x = DiagGrid[["diagram"]], band = 2 * bandKDE[["width"]],
main = "KDE Diagram")
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R Package TDA computes the bootstrap confidence band
for the persistence landscape.

The (1 — &) bootstrap confidence band for E[p,] is used as the
confidence band for the persistence landscape.

par (mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(tseq, Land, type = "1", xlab = "(Birth+Death)/2",
ylab = "(Death-Birth)/2", asp = 1, axes = FALSE, main = "500 samples")

axis(1); axis(2)
polygon(c(tseq, rev(tseq)), c(Land - bandKDE[["width"]],

rev(Land + bandKDE[["width"]])), col = "pink", lwd = 1.5,

border = NA)
lines(tseq, Land)
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R Package TDA computes the bootstrap confidence band
for the persistence landscape.

The (1 — «) bootstrap confidence band for E[py] is used as the
confidence band for the persistence landscape.

Sample X 500 samples
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