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High dimensional data entails curse of dimensionality.

1

1The Elements of Statistical Learning, Figure 2.6
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Manifold Learning finds an underlying manifold to reduce
dimension.

2

2http://www.skybluetrades.net/blog/posts/2011/10/30/machine-learning/
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Intrinsic dimension of manifold need to be estimated.

I Most manifold learning algorithms require the intrinsic dimension of
the manifold as input.

I Intrinc dimension is rarely known in advance and therefore has to be
estimated.
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Upper bounds and lower bounds of minimax rate is of
interest.

I Various intrinsic dimension estimators have been proposed, but
universal theoretical bound have not been obtained.

I Minimax rate is the risk of an estimator that performs best in the
worst case, as a function of sample size.

I

Rn = inf
ˆdimn

sup
P∈P

EP(n)

[
`
(

ˆdimn(X ), dim(P)
)]

I X = (X1, · · · ,Xn) is drawn from a fixed distribution P, where P is
contained in set of distributionsP.

I estimator ˆdimn is any function of data X .
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Upper bounds and lower bounds of minimax rate is of
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︸ ︷︷ ︸
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The supporting manifold M is assumed to be bounded.

M ⊂ I := [−KI ,KI ]
m ⊂ Rm with KI ∈ (0,∞)
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The curvature is assumed to be bounded to avoid an
arbitrarily complicated manifold.

Definition
Fix 0 ≤ κl ≤ κg <∞. A compact d-dimentional topological manifold M
(with boundary) is of global curvature ≤ κg , if for all points x in

Rg

(
:= 1

κg

)
-neighborhood of M has unique projection πM(x) to M.

πM (x)

x

≤ Rg

M
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The curvature is assumed to be bounded to avoid an
arbitrarily complicated manifold.

Definition
M is of local curvature ≤ κl , if for all points in x ∈ M, there exists
neighborhood Ux ⊂ M such that Ux is of global curvature ≤ κl .

≥ Rly

πUx
(y) x

Ux
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Density is bounded away from ∞ with respect to the
uniform measure.

I Distribution P is absolutely continuous to induced Lebesgue measure
volM , and dP

dvolM
≤ Kp for fixed Kp.

I This implies that the distribution on the manifold is of essential
dimension d .

I Pd
κl ,κg ,Kp

denotes set of distributions P that is supported on
d-dimensional manifold of global curvature ≤ κg and global curvature
≤ κl , and density is bounded by Kp.
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Binary classification and 0− 1 loss are considered.

I

Rn = inf
ˆdimn

sup
P∈P

EP(n)

[
`
(

ˆdimn(X ), dim(P)
)]

I We assume that the manifolds are of two possible dimensions, d1 and
d2, so considered distribution set is P = Pd1

κl ,κg ,Kp
∪ Pd2

κl ,κg ,Kp
.

I 0− 1 loss function is considered, so for all x , y ∈ R,
`(x , y) = I (x = y).
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The maximum risk of any chosen estimator provides an
upper bound on the minimax rate.

Rn = inf
ˆdimn

sup
P∈P

EP(n)

[
`
(

ˆdimn(X ), dim(P)
)]

≤ sup
P∈P

EP(n)

[
`
(

ˆdimn(X ), dim(P)
)]

︸ ︷︷ ︸
the maximum risk of any chosen estimator
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TSP(Travelling Salesman Problem) finds shortest path that
visits each points exactly once.

3

3http://www.heatonresearch.com/fun/tsp/anneal
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Our estimator estimates dimension to be d2 if d1-squared
length of TSP generated by the data is long.

I When intrinsic dimesion is higher, length of TSP is likely to be higher.
I

ˆdimn(X ) = d1 ⇐⇒

∃σ ∈ Sn s.t
n−1∑

i=1

‖Xσ(i+1) − Xσ(i)‖d1
Rm ≤ C

(3,2)
KI ,d1,m

κm−d1
g ,

where C
(3,2)
KI ,,d1,m

is some constant that depends only on KI , d1, and m.
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Our estimator has maximum risk of O
(
n
−
(

d2
d1
−1
)
n
)
.

I Our estimator makes error with probability at most O
(
n
−
(

d2
d1
−1

)
n
)

if

intrinsic dimension is d2.
I Our estimator is always correct when the intrinsic dimension is d1.
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Our estimator makes error with probability at most

O

(
n
−
(

d2
d1
−1
)
n
)

if intrinsic dimension is d2.

I Based on following lemma:

Lemma
Let X1, · · · ,Xn ∼ P ∈ Pd2

κl ,κg ,Kp
, then

P(n)

[
n−1∑

i=1

‖Xi+1 − Xi‖d1 ≤ L

]
≤

(
C

(3,1)
Kp ,d2,m

)n−1
L

d2
d1

(n−1)
κ
(m−d2)(n−1)
g

(n − 1)

(
d2
d1
−1

)
(n−1)

(n − 1)!

,

where C
(3,1)
Kp ,d1,d2,m

depends only on Kp, d1, d2,m.
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Our estimator is always correct when the intrinsic dimension
is d1.

I Based on following lemma:

Lemma
Let M be a d1-dimensional manifold with global curvature ≤ κg and local
curvature ≤ κl , and X1, · · · ,Xn ∈ M. Then there exists C (3,2)

KI ,d1,m
which

depends only on d1 and KI , and there exists σ ∈ Sn such that

n−1∑

i=1

‖Xσ(i+1) − Xσ(i)‖d1
Rm ≤ C

(3,2)
KI ,d1,m

κm−d1
g .
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Our estimator is always correct when the intrinsic dimension
is d1.

n−1∑

i=1

‖Xσ(i+1) − Xσ(i)‖d1
Rm ≤ C

(3,2)
KI ,d1,m

κm−d1
g .

I When d1 = 1 so that the manifold is a curve, length of TSP path is
bounded by length of curve volM(M).

Xσ(1)

Xσ(2)

Xσ(3)

Xσ(n−1)

Xσ(n)

. . .

Y1

Y2

Yn−1

∑
Yi ≤ volM (M)

M

Xσ(n−2)

Yn−2

I Global curvature≤ κg implies volM(M) is bounded.
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Our estimator is always correct when the intrinsic dimension
is d1.

n−1∑

i=1

‖Xσ(i+1) − Xσ(i)‖d1
Rm ≤ C

(3,2)
KI ,d1,m

κm−d1
g .

I When d1 > 1, Several conditions implied by regularity conditions
combined with Hölder continuity of d1-dimensional space-filling curve
is used.
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Our estimator is always correct when the intrinsic dimension
is d1.

n−1∑

i=1

‖Xσ(i+1) − Xσ(i)‖d1
Rm ≤ C

(3,2)
KI ,d1,m

κm−d1
g .

I When d1 > 1, Several conditions implied by regularity conditions
combined with Hölder continuity of d1-dimensional space-filling curve
is used.

Lemma
(Space-filling curve) There exists surjective map ψd : R→ Rd which is
Hölder continuous of order 1/d , i.e.

0 ≤ ∀s, t ≤ 1, ‖ψd(s)− ψd(t)‖Rd ≤ 2
√
d + 3|s − t|1/d .
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Mimimax rate is upper bounded by O

(
n
−
(

d2
d1
−1
)
n
)
.

Proposition
Let 1 ≤ d1 < d2 ≤ m. Then

inf
ˆdimn

sup
P∈Pd1

κl ,κg ,Kp
∪Pd2

κl ,κg ,Kp

EP(n)

[
l
(

ˆdimn, dim(P)
)]

≤
(
C

(3,3)
KI ,Kp ,d1,d2,m

)n
κ

(
d2
d1

m+m−2d2

)
n

g n
−
(

d2
d1
−1

)
n
,

for some C
(3,3)
KI ,Kp ,d1,d2,m

that depends only on KI ,Kp, d1, d2,m.
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A subset T ⊂ I n and set of distributions Pd1
1 , Pd2

2 are found
so that, whenever X = (X1, · · · ,Xn) ∈ T , we cannot
distinguish two models.

I The lower bound measures how hard it is to tell whether the data
come from a d1 or d2 -dimensional manifold.

I T , Pd1
1 and Pd2

2 are linked to the lower bound by using Le Cam’s
lemma.
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Le Cam’s lemma provides lower bounds based on the
minimum of two densities q1 ∧ q2, where q1, q2 are in
convex hull of Pd1

1 and convex hull of Pd2
2 , respectively.

Lemma
Let P be a set of probability measures on (Ω,F), and P1,P2 ⊂ P be such
that for all P ∈ Pi , θ(P) = θi for i = 1, 2, and X : Ω→ I n is observations.
Let Q1 ∈ conv(P1) and Q2 ∈ conv(P2), where conv(Pi ) is convex hull of
Pi . Assume that induced measure of X on (Ω,Q1) and (Ω,Q2) has density
q1 and q2 respectively with respect to (I n,B(I n), ν), so that

Q1(X ∈ B) =

∫

B
q1(x)dν(x) and Q2(X ∈ B) =

∫

B
q2(x)dν(x).

Then

inf
θ̂
sup
P∈P

EP [d(θ̂, θ(P))] ≥ d(θ1, θ2)

4

∫
[q1(x) ∧ q2(x)]dν(x).
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T is constructed so that for any x = (x1, · · · , xn) ∈ T ,
there exists a d1-dimensional manifold that satisfies
regularity conditions and passes through x1, · · · , xn.

I Ti ’s are cylinder sets in [−KI ,KI ]
d2 , and then T is constructed as

T = Sn
n∏

i=1
Ti , where the permutation group Sn acts on

n∏
i=1

Ti as a

coordinate change.
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T is constructed so that for any x = (x1, · · · , xn) ∈ T ,
there exists a d1-dimensional manifold that satisfies
regularity conditions and passes through x1, · · · , xn.

I Given x1, · · · , xn ∈ T (blue points), manifold of global curvature ≤ κg
and local curvature ≤ κl (red line) passes through x1, · · · , xn.
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T is constructed so that for any x = (x1, · · · , xn) ∈ T ,
there exists a d1-dimensional manifold that satisfies
regularity conditions and passes through x1, · · · , xn.

I Intersection of the manifold and each Ri ,j is union of two circles.
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Pd1
1 is constructed as set of distributions that are supported

on manifolds that passes through x1, · · · , xn for
x = (x1, · · · , xn) ∈ T , and Pd2

2 is a singleton set consisting
of the uniform distirbution on [−KI ,KI ]

d2.
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If X ∈ T , it is hard to determine whether X is sampled
from distribution P in either Pd1

1 or Pd2
2 .

I There exists Q1 ∈ conv(Pd1
1 ) and Q2 ∈ conv(Pd2

2 ) such that
q1(x) ≥ Cq2(x) for every x ∈ T with C < 1.

I Then q1(x) ∧ q2(x) ≥ Cq2(x) if x ∈ T , so C
∫
T q2(x)dx can serve as

lower bound of minimax rate.
I Based on following claim:

Claim
Let T = Sn

n∏
i=1

Ti . Then for all x ∈ intT , there exists rx > 0 such that for

all r < rx ,

Q1

(
n∏

i=1

B‖‖Rd2 ,∞
(xi , r)

)
≥ 2n(d2−2d1−3)

ωd2−d1−1
Q2

(
n∏

i=1

B‖‖Rd2 ,∞
(xi , r)

)
.
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Mimimax rate is lower bounded by O
(
n−2(d2−d1)n

)
.

I Lower bound below is now combination of Le Cam’s lemma,
constructions of T , Pd1

1 , Pd2
2 , and claim.

Proposition
Suppose I = [−KI ,KI ]

m and Rl < KI , then

inf
ˆdim

sup
P∈Pd1

κl ,κg ,Kp
∪Pd2

κl ,κg ,Kp

EP(n) [l( ˆdimn, dim(P))] ≥ O
(
κ
(d2−d1)n
l n−2(d2−d1)n

)
.
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Thank you!
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