Minimax Rate for Estimating the Dimension of a Manifold

Jisu Kim (Carnegie Mellon University)
Alessandro Rinaldo (Carnegie Mellon University)
Larry Wasserman (Carnegie Mellon University)

2015.05.28

Introduction

Regularity conditions on Distributions and supporting Manifolds

Upper Bound

Lower Bound

High dimensional data entails curse of dimensionality.

Fraction of Volume
1

Manifold Learning finds an underlying manifold to reduce dimension.

[^0]
Intrinsic dimension of manifold need to be estimated.

- Most manifold learning algorithms require the intrinsic dimension of the manifold as input.
- Intrinc dimension is rarely known in advance and therefore has to be estimated.

Upper bounds and lower bounds of minimax rate is of interest.

- Various intrinsic dimension estimators have been proposed, but universal theoretical bound have not been obtained.
- Minimax rate is the risk of an estimator that performs best in the worst case, as a function of sample size.

$$
R_{n}=\inf _{\operatorname{dim}_{n}} \sup _{P \in \mathcal{P}} \mathbb{E}_{P^{(n)}}\left[\ell\left(\operatorname{dim}_{n}(X), \operatorname{dim}(P)\right)\right]
$$

- $X=\left(X_{1}, \cdots, X_{n}\right)$ is drawn from a fixed distribution P, where P is contained in set of distributions \mathcal{P}.
- estimator dim_{n} is any function of data X.

Upper bounds and lower bounds of minimax rate is of interest.

- Various intrinsic dimension estimators have been proposed, but universal theoretical bound have not been obtained.
- Minimax rate is the risk of an estimator that performs best in the worst case, as a function of sample size.

$$
R_{n}=\inf _{\operatorname{dim}_{n}} \underbrace{\sup }_{\text {the risk of an estimator in the worst case }} \mathbb{E}_{P^{(n)}}\left[\ell\left(\operatorname{dim}_{n}(X), \operatorname{dim}(P)\right)\right]
$$

Upper bounds and lower bounds of minimax rate is of interest.

- Various intrinsic dimension estimators have been proposed, but universal theoretical bound have not been obtained.
- Minimax rate is the risk of an estimator that performs best in the worst case, as a function of sample size.

$$
R_{n}=\underbrace{\inf _{\operatorname{dim}_{n}} \sup \mathbb{E}_{P \in \mathcal{P}}} \mathbb{E}_{P^{(n)}}\left[\ell\left(\operatorname{dim}_{n}(X), \operatorname{dim}(P)\right)\right]
$$

the risk of an estimator that performs best in the worst case.

Introduction

Regularity conditions on Distributions and supporting Manifolds

Upper Bound

Lower Bound

The supporting manifold M is assumed to be bounded.

$$
M \subset I:=\left[-K_{l}, K_{l}\right]^{m} \subset \mathbb{R}^{m} \text { with } K_{l} \in(0, \infty)
$$

The curvature is assumed to be bounded to avoid an arbitrarily complicated manifold.

Definition

Fix $0 \leq \kappa_{I} \leq \kappa_{g}<\infty$. A compact d-dimentional topological manifold M (with boundary) is of global curvature $\leq \kappa_{g}$, if for all points x in $R_{g}\left(:=\frac{1}{\kappa_{g}}\right)$-neighborhood of M has unique projection $\pi_{M}(x)$ to M.

The curvature is assumed to be bounded to avoid an arbitrarily complicated manifold.

Definition

M is of local curvature $\leq \kappa_{l}$, if for all points in $x \in M$, there exists neighborhood $U_{x} \subset M$ such that U_{x} is of global curvature $\leq \kappa_{l}$.

Density is bounded away from ∞ with respect to the uniform measure.

- Distribution P is absolutely continuous to induced Lebesgue measure vol $_{M}$, and $\frac{d P}{d v o l_{M}} \leq K_{p}$ for fixed K_{p}.
- This implies that the distribution on the manifold is of essential dimension d.
- $\mathcal{P}_{\kappa_{l}, \kappa_{g}, K_{p}}^{d}$ denotes set of distributions P that is supported on d-dimensional manifold of global curvature $\leq \kappa_{g}$ and global curvature $\leq \kappa_{l}$, and density is bounded by K_{p}.

Binary classification and $0-1$ loss are considered.

$$
R_{n}=\inf _{\operatorname{dim}_{n}} \sup _{P \in \mathcal{P}} \mathbb{E}_{P^{(n)}}\left[\ell\left(\operatorname{dim}_{n}(X), \operatorname{dim}(P)\right)\right]
$$

- We assume that the manifolds are of two possible dimensions, d_{1} and d_{2}, so considered distribution set is $\mathcal{P}=\mathcal{P}_{\kappa_{1}, \kappa_{g}, K_{p}}^{d_{1}} \cup \mathcal{P}_{\kappa_{1}, \kappa_{g}, \kappa_{p}}^{d_{2}}$.
- $0-1$ loss function is considered, so for all $x, y \in \mathbb{R}$, $\ell(x, y)=I(x=y)$.

Introduction

Regularity conditions on Distributions and supporting Manifolds

Upper Bound

The maximum risk of any chosen estimator provides an upper bound on the minimax rate.

$$
\begin{aligned}
R_{n} & =\inf _{\operatorname{dim}_{n}} \sup _{P \in \mathcal{P}} \mathbb{E}_{P^{(n)}}\left[\ell\left(\operatorname{dim}_{n}(X), \operatorname{dim}(P)\right)\right] \\
& \leq \underbrace{\sup _{P \in \mathcal{P}} \mathbb{E}_{P^{(n)}}\left[\ell\left(\operatorname{dim}_{n}(X), \operatorname{dim}(P)\right)\right]}_{\text {the maximum risk of any chosen estimator }}
\end{aligned}
$$

TSP(Travelling Salesman Problem) finds shortest path that visits each points exactly once.

[^1]Our estimator estimates dimension to be d_{2} if d_{1}-squared length of TSP generated by the data is long.

- When intrinsic dimesion is higher, length of TSP is likely to be higher.

$$
\begin{aligned}
& \operatorname{dim}_{n}(X)=d_{1} \Longleftrightarrow \\
& \exists \sigma \in S_{n} \text { s.t } \sum_{i=1}^{n-1}\left\|X_{\sigma(i+1)}-X_{\sigma(i)}\right\|_{\mathbb{R}^{m}}^{d_{1}} \leq C_{K_{l}, d_{1}, m}^{(3,2)} \kappa_{g}^{m-d_{1}}
\end{aligned}
$$

where $C_{K_{l}, d_{1}, m}^{(3,2)}$ is some constant that depends only on K_{l}, d_{1}, and m.

Our estimator has maximum risk of $O\left(n^{-\left(\frac{d_{2}}{d_{1}}-1\right) n}\right)$.

- Our estimator makes error with probability at most $O\left(n^{-\left(\frac{d_{2}}{d_{1}}-1\right) n}\right)$ if intrinsic dimension is d_{2}.
- Our estimator is always correct when the intrinsic dimension is d_{1}.

Our estimator makes error with probability at most
$O\left(n^{-\left(\frac{d_{2}}{d_{1}}-1\right) n}\right)$ if intrinsic dimension is d_{2}.

- Based on following lemma:

Lemma
Let $X_{1}, \cdots, X_{n} \sim P \in \mathcal{P}_{\kappa_{l}, \kappa_{g}, K_{p}}^{d_{2}}$, then

$$
P^{(n)}\left[\sum_{i=1}^{n-1}\left\|X_{i+1}-X_{i}\right\|^{d_{1}} \leq L\right] \leq \frac{\left(C_{K_{p}, d_{2}, m}^{(3,1)}\right)^{n-1} L^{\frac{d_{2}}{d_{1}}(n-1)} \kappa_{g}^{\left(m-d_{2}\right)(n-1)}}{(n-1)^{\left(\frac{d_{2}}{d_{1}}-1\right)(n-1)}(n-1)!},
$$

where $C_{K_{p}, d_{1}, d_{2}, m}^{(3,1)}$ depends only on K_{p}, d_{1}, d_{2}, m.

Our estimator is always correct when the intrinsic dimension is d_{1}.

- Based on following lemma:

Lemma

Let M be a d_{1}-dimensional manifold with global curvature $\leq \kappa_{g}$ and local curvature $\leq \kappa_{l}$, and $X_{1}, \cdots, X_{n} \in M$. Then there exists $C_{K_{l}, d_{1}, m}^{(3,2)}$ which depends only on d_{1} and K_{l}, and there exists $\sigma \in S_{n}$ such that

$$
\sum_{i=1}^{n-1}\left\|X_{\sigma(i+1)}-X_{\sigma(i)}\right\|_{\mathbb{R}^{m}}^{d_{1}} \leq C_{K_{l}, d_{1}, m}^{(3,2)} \kappa_{g}^{m-d_{1}}
$$

Our estimator is always correct when the intrinsic dimension is d_{1}.

$$
\sum_{i=1}^{n-1}\left\|X_{\sigma(i+1)}-X_{\sigma(i)}\right\|_{\mathbb{R}^{m}}^{d_{1}} \leq C_{K l}^{\left(3, d_{1}, m\right.} \kappa_{g}^{m-d_{1}} .
$$

- When $d_{1}=1$ so that the manifold is a curve, length of TSP path is bounded by length of curve $\mathrm{vol}_{M}(M)$.

- Global curvature $\leq \kappa_{g}$ implies $\operatorname{vol}_{M}(M)$ is bounded.

Our estimator is always correct when the intrinsic dimension is d_{1}.

$$
\sum_{i=1}^{n-1}\left\|X_{\sigma(i+1)}-X_{\sigma(i)}\right\|_{\mathbb{R}^{m}}^{d_{1}} \leq C_{K_{l}, d_{1}, m}^{(3,2)} \kappa_{g}^{m-d_{1}}
$$

- When $d_{1}>1$, Several conditions implied by regularity conditions combined with Hölder continuity of d_{1}-dimensional space-filling curve is used.

(a)

(b)

(c)

(d)

Our estimator is always correct when the intrinsic dimension is d_{1}.

$$
\sum_{i=1}^{n-1}\left\|X_{\sigma(i+1)}-X_{\sigma(i)}\right\|_{\mathbb{R}^{m}}^{d_{1}} \leq C_{K l, d_{1}, m}^{(3,2)} \kappa_{g}^{m-d_{1}} .
$$

- When $d_{1}>1$, Several conditions implied by regularity conditions combined with Hölder continuity of d_{1}-dimensional space-filling curve is used.

Lemma

(Space-filling curve) There exists surjective map $\psi_{d}: \mathbb{R} \rightarrow \mathbb{R}^{d}$ which is Hölder continuous of order $1 / d$, i.e.

$$
0 \leq \forall s, t \leq 1,\left\|\psi_{d}(s)-\psi_{d}(t)\right\|_{\mathbb{R}^{d}} \leq 2 \sqrt{d+3}|s-t|^{1 / d} .
$$

Mimimax rate is upper bounded by $O\left(n^{-\left(\frac{d_{2}}{d_{1}}-1\right) n}\right)$.

Proposition
Let $1 \leq d_{1}<d_{2} \leq m$. Then

$$
\begin{aligned}
& \inf _{\operatorname{dim}_{n} \in \mathcal{P}_{\kappa_{1}, \kappa_{g}, K_{P}}^{d_{1}} \cup \mathcal{P}_{\kappa_{l}, \kappa_{g}, K_{P}}^{d_{2}}} \sup _{P^{(n)}}\left[I\left(\operatorname{dim}_{n}, \operatorname{dim}(P)\right)\right] \\
& \leq\left(C_{K_{l}, K_{p}, d_{1}, d_{2}, m}^{(3,3)}\right)^{n} \kappa_{g}^{\left(\frac{d_{2}}{d_{1}} m+m-2 d_{2}\right) n} n^{-\left(\frac{d_{2}}{d_{1}}-1\right) n}
\end{aligned}
$$

for some $C_{K_{l}, K_{p}, d_{1}, d_{2}, m}^{(3,3)}$ that depends only on $K_{l}, K_{p}, d_{1}, d_{2}, m$.

Introduction

Regularity conditions on Distributions and supporting Manifolds

Upper Bound

Lower Bound

A subset $T \subset I^{n}$ and set of distributions $\mathcal{P}_{1}^{d_{1}}, \mathcal{P}_{2}^{d_{2}}$ are found so that, whenever $X=\left(X_{1}, \cdots, X_{n}\right) \in T$, we cannot distinguish two models.

- The lower bound measures how hard it is to tell whether the data come from a d_{1} or d_{2}-dimensional manifold.
- $T, \mathcal{P}_{1}^{d_{1}}$ and $\mathcal{P}_{2}^{d_{2}}$ are linked to the lower bound by using Le Cam's lemma.

Le Cam's lemma provides lower bounds based on the minimum of two densities $q_{1} \wedge q_{2}$, where q_{1}, q_{2} are in convex hull of $\mathcal{P}_{1}^{d_{1}}$ and convex hull of $\mathcal{P}_{2}^{d_{2}}$, respectively.

Lemma

Let \mathcal{P} be a set of probability measures on (Ω, \mathcal{F}), and $\mathcal{P}_{1}, \mathcal{P}_{2} \subset \mathcal{P}$ be such that for all $P \in \mathcal{P}_{i}, \theta(P)=\theta_{i}$ for $i=1,2$, and $X: \Omega \rightarrow I^{n}$ is observations. Let $Q_{1} \in \operatorname{conv}\left(\mathcal{P}_{1}\right)$ and $Q_{2} \in \operatorname{conv}\left(\mathcal{P}_{2}\right)$, where $\operatorname{conv}\left(\mathcal{P}_{i}\right)$ is convex hull of \mathcal{P}_{i}. Assume that induced measure of X on $\left(\Omega, Q_{1}\right)$ and $\left(\Omega, Q_{2}\right)$ has density q_{1} and q_{2} respectively with respect to $\left(I^{n}, \mathcal{B}\left(I^{n}\right), \nu\right)$, so that

$$
Q_{1}(X \in B)=\int_{B} q_{1}(x) d \nu(x) \text { and } Q_{2}(X \in B)=\int_{B} q_{2}(x) d \nu(x)
$$

Then

$$
\inf _{\hat{\theta}} \sup _{P \in \mathcal{P}} \mathbb{E}_{P}[d(\hat{\theta}, \theta(P))] \geq \frac{d\left(\theta_{1}, \theta_{2}\right)}{4} \int\left[q_{1}(x) \wedge q_{2}(x)\right] d \nu(x) .
$$

T is constructed so that for any $x=\left(x_{1}, \cdots, x_{n}\right) \in T$, there exists a d_{1}-dimensional manifold that satisfies regularity conditions and passes through x_{1}, \cdots, x_{n}.

- T_{i} 's are cylinder sets in $\left[-K_{l}, K_{l}\right]^{d_{2}}$, and then T is constructed as $T=S_{n} \prod_{i=1}^{n} T_{i}$, where the permutation group S_{n} acts on $\prod_{i=1}^{n} T_{i}$ as a coordinate change.

T is constructed so that for any $x=\left(x_{1}, \cdots, x_{n}\right) \in T$, there exists a d_{1}-dimensional manifold that satisfies regularity conditions and passes through x_{1}, \cdots, x_{n}.
- Given $x_{1}, \cdots, x_{n} \in T$ (blue points), manifold of global curvature $\leq \kappa_{g}$ and local curvature $\leq \kappa_{l}$ (red line) passes through x_{1}, \cdots, x_{n}.

T is constructed so that for any $x=\left(x_{1}, \cdots, x_{n}\right) \in T$, there exists a d_{1}-dimensional manifold that satisfies regularity conditions and passes through x_{1}, \cdots, x_{n}.
- Intersection of the manifold and each $R_{i, j}$ is union of two circles.

$$
\left(0, p+\frac{q-p}{\| p-q)} R^{l}\right)
$$

$\mathcal{P}_{1}^{d_{1}}$ is constructed as set of distributions that are supported on manifolds that passes through x_{1}, \cdots, x_{n} for $x=\left(x_{1}, \cdots, x_{n}\right) \in T$, and $\mathcal{P}_{2}^{d_{2}}$ is a singleton set consisting of the uniform distirbution on $\left[-K_{l}, K_{l}\right]^{d_{2}}$.

If $X \in T$, it is hard to determine whether X is sampled from distribution P in either $\mathcal{P}_{1}^{d_{1}}$ or $\mathcal{P}_{2}^{d_{2}}$.

- There exists $Q_{1} \in \operatorname{conv}\left(\mathcal{P}_{1}^{d_{1}}\right)$ and $Q_{2} \in \operatorname{conv}\left(\mathcal{P}_{2}^{d_{2}}\right)$ such that $q_{1}(x) \geq C q_{2}(x)$ for every $x \in T$ with $C<1$.
- Then $q_{1}(x) \wedge q_{2}(x) \geq C q_{2}(x)$ if $x \in T$, so $C \int_{T} q_{2}(x) d x$ can serve as lower bound of minimax rate.
- Based on following claim:

Claim

Let $T=S_{n} \prod_{i=1}^{n} T_{i}$. Then for all $x \in \operatorname{int} T$, there exists $r_{x}>0$ such that for all $r<r_{x}$,

$$
Q_{1}\left(\prod_{i=1}^{n} B_{\| \|_{\mathbb{R}} d_{2, \infty}}\left(x_{i}, r\right)\right) \geq \frac{2^{n\left(d_{2}-2 d_{1}-3\right)}}{\omega_{d_{2}-d_{1}-1}} Q_{2}\left(\prod_{i=1}^{n} B_{\| \|_{\mathbb{R}} d_{2}, \infty}\left(x_{i}, r\right)\right) .
$$

Mimimax rate is lower bounded by $O\left(n^{-2\left(d_{2}-d_{1}\right) n}\right)$.

- Lower bound below is now combination of Le Cam's lemma, constructions of $T, \mathcal{P}_{1}^{d_{1}}, \mathcal{P}_{2}^{d_{2}}$, and claim.

Proposition

Suppose $I=\left[-K_{l}, K_{l}\right]^{m}$ and $R_{l}<K_{l}$, then
$\inf _{\operatorname{dim}_{P \in \mathcal{P}^{d_{1}}}} \sup \mathbb{E}_{P^{(n)}}\left[/\left(\operatorname{dim}_{n}, \operatorname{dim}(P)\right)\right] \geq O\left(\kappa_{l}^{\left(d_{2}-d_{1}\right) n} n^{-2\left(d_{2}-d_{1}\right) n}\right)$. $\operatorname{dim}_{P \in \mathcal{P}_{\kappa l, \kappa g, K_{P}}^{d_{1}} \cup \mathcal{P}_{\kappa_{l}, \kappa_{g}, \kappa_{p}}^{d_{2}},}$

Thank you!

[^0]: ${ }^{2}$ http://www.skybluetrades.net/blog/posts/2011/10/30/machine-learning/

[^1]: $3_{\text {http://www.heatonresearch.com/fun/tsp/anneal }}$

