Minimax Rate for Estimating the Dimension of a Manifold

Jisu Kim (Carnegie Mellon University)
Alessandro Rinaldo (Carnegie Mellon University)
Larry Wasserman (Carnegie Mellon University)

2015.11.14

Introduction

Upper Bound

Lower Bound

Upper Bound and Lower Bound for General Case

Manifold Learning Finds an Underlying Manifold to Reduce Dimension.

[^0]
Intrinsic Dimension of a Manifold needs to be Estimated.

- Most manifold learning algorithms require the intrinsic dimension of the manifold as input.
- Intrinsic dimension is rarely known in advance and therefore has to be estimated.

Minimax Rate is of Interest.

- Minimax rate is the risk of an estimator that performs best in the worst case, as a function of the sample size.

$$
R_{n}=\inf _{\operatorname{dim}_{n}} \sup _{P \in \mathcal{P}} \underbrace{\mathbb{E}_{P^{(n)}}\left[\ell\left(\operatorname{dim}_{n}(X), \operatorname{dim}(P)\right)\right]}_{\text {risk of an estimator }}
$$

- $X=\left(X_{1}, \cdots, X_{n}\right)$ is drawn from a fixed distribution P, where P is contained in set of distributions \mathcal{P}.
- estimator dim_{n} is any function of the data X.

Minimax Rate is of Interest.

- Minimax rate is the risk of an estimator that performs best in the worst case, as a function of the sample size.

$$
R_{n}=\inf _{\operatorname{dim}_{n}} \underbrace{\sup _{P \in \mathcal{P}} \mathbb{E}_{P^{(n)}}\left[\ell\left(\operatorname{dim}_{n}(X), \operatorname{dim}(P)\right)\right]}_{\text {risk of an estimator in the worst case }}
$$

- $X=\left(X_{1}, \cdots, X_{n}\right)$ is drawn from a fixed distribution P, where P is contained in set of distributions \mathcal{P}.
- estimator dim_{n} is any function of the data X.

Minimax Rate is of Interest.

- Minimax rate is the risk of an estimator that performs best in the worst case, as a function of the sample size.

$$
R_{n}=\underbrace{\inf _{\operatorname{dim}_{n}} \sup _{P \in \mathcal{P}} \mathbb{E}_{P^{(n)}}\left[\ell\left(\operatorname{dim}_{n}(X), \operatorname{dim}(P)\right)\right]}_{\text {risk of an estimator that performs best in the worst case }}
$$

- $X=\left(X_{1}, \cdots, X_{n}\right)$ is drawn from a fixed distribution P, where P is contained in set of distributions \mathcal{P}.
- estimator dim_{n} is any function of the data X.

Regularity Conditions on Measures and Conditions on Distributions and Supporting Manifolds are Assumed.

Regularity Conditions on Measures and Conditions on Distributions and Supporting Manifolds are Assumed.

[^1]
Regularity Conditions on Measures and Conditions on Distributions and Supporting Manifolds are Assumed.

$$
\frac{d P}{d v o I_{M}} \leq K_{p}
$$

Regularity Conditions on Measures and Conditions on Distributions and Supporting Manifolds are Assumed.

- \mathcal{P}^{d} denotes set of distributions P with bounded support, bounded curvature, and bounded density.

Binary Classification and $0-1$ loss are Considered.

$$
R_{n}=\inf _{\operatorname{dim}_{n}} \sup _{P \in \mathcal{P}} \mathbb{E}_{P^{(n)}}\left[\ell\left(\operatorname{dim}_{n}(X), \operatorname{dim}(P)\right)\right]
$$

- We assume that the manifolds are of two possible dimensions, d_{1} and d_{2}, so the considered distribution set is $\mathcal{P}=\mathcal{P}^{d_{1}} \cup \mathcal{P}^{d_{2}}$.
- $0-1$ loss function is considered, so for all $x, y \in \mathbb{R}$, $\ell(x, y)=I(x \neq y)$.

Introduction

Upper Bound

```
Lower Bound
```

Upper Bound and Lower Bound for General Case

The Maximum Risk of any chosen Estimator Provides an Upper Bound on the Minimax Rate.

$$
\begin{aligned}
R_{n} & =\inf _{\operatorname{dim}_{n}} \sup _{P \in \mathcal{P}} \mathbb{E}_{P^{(n)}}\left[\ell\left(\operatorname{dim}_{n}(X), \operatorname{dim}(P)\right)\right] \\
& \leq \underbrace{\sup _{P \in \mathcal{P}} \mathbb{E}_{P^{(n)}}\left[\ell\left(\operatorname{dim}_{n}(X), \operatorname{dim}(P)\right)\right]}_{\text {the maximum risk of any chosen estimator }}
\end{aligned}
$$

TSP(Travelling Salesman Problem) Path Finds Shortest Path that Visits Each Points exactly Once.

[^2]Our Estimator estimates Dimension to be d_{2} if d_{1}-squared Length of TSP Generated by the Data is Long.

- When intrinsic dimesion is higher, length of TSP path is likely to be longer.

$$
\begin{aligned}
& \operatorname{dim}_{n}(X)=d_{1} \Longleftrightarrow \\
& \exists \sigma \in S_{n} \text { s.t } \sum_{i=1}^{n-1}\left\|X_{\sigma(i+1)}-X_{\sigma(i)}\right\|_{\mathbb{R}^{m}}^{d_{1}} \leq C,
\end{aligned}
$$

where C is some constant that depends only on regularity conditions.

Mimimax Rate is Upper Bounded by $O\left(n^{-\left(\frac{d_{2}}{d_{1}}-1\right) n}\right)$.

Our estimator has maximum risk of $O\left(n^{-\left(\frac{d_{1}}{\left(d_{1}\right.}-1\right) n}\right)$.
Proposition
Let $1 \leq d_{1}<d_{2} \leq m$. Then

$$
\inf _{\operatorname{dim}_{n} P \in \mathcal{P}^{d_{1} \cup \mathcal{P}^{d_{2}}}} \mathbb{E}_{P^{(n)}}\left[I\left(\operatorname{dim}_{n}, \operatorname{dim}(P)\right)\right] \lesssim n^{-\left(\frac{d_{2}}{d_{1}}-1\right) n}
$$

Introduction

Upper Bound

Lower Bound

```
Upper Bound and Lower Bound for General Case
```

Le Cam's Lemma provides Lower Bounds based on the Minimum of Two Densities $q_{1} \wedge q_{2}$, where q_{i} are in Convex Hull of $\mathcal{P}^{d_{i}}$.

Lemma

Let \mathcal{P} be a set of probability measures, and $\mathcal{P}^{d_{1}}, \mathcal{P}^{d_{2}} \subset \mathcal{P}$ be such that for all $P \in \mathcal{P}^{d_{i}}, \theta(P)=\theta_{i}$ for $i=1,2$. For any $Q_{i} \in \operatorname{co}\left(\mathcal{P}_{i}\right)$, let q_{i} be density of Q_{i} with respect to measure ν. Then

$$
\inf _{\hat{\theta}} \sup _{P \in \mathcal{P}} \mathbb{E}_{P}[d(\hat{\theta}, \theta(P))] \geq \frac{d\left(\theta_{1}, \theta_{2}\right)}{4} \sup _{Q_{i} \in \operatorname{co}\left(\mathcal{P}^{d_{i}}\right)} \int\left[q_{1}(x) \wedge q_{2}(x)\right] d \nu(x)
$$

T is Constructed so that for any $x=\left(x_{1}, \cdots, x_{n}\right) \in T$, there exists a d_{1}-dimensional Manifold belonging to the Model and Passing through x_{1}, \cdots, x_{n}.

- T_{i} 's are cylinder sets in $\left[-K_{l}, K_{l}\right]^{d_{2}}$, and then T is constructed as $T=S_{n} \prod_{i=1}^{n} T_{i}$, where the permutation group S_{n} acts on $\prod_{i=1}^{n} T_{i}$ as a coordinate change.

T is Constructed so that for any $x=\left(x_{1}, \cdots, x_{n}\right) \in T$, there exists a d_{1}-dimensional Manifold belonging to the Model and Passing through x_{1}, \cdots, x_{n}.
- Given $x_{1}, \cdots, x_{n} \in T$ (blue points), a manifold in the model (red line) passes through x_{1}, \cdots, x_{n}.

$\mathcal{P}^{d_{1}}$ is Constructed as Set of Distributions that are Supported on Manifolds that Passes through x_{1}, \cdots, x_{n} for $x=\left(x_{1}, \cdots, x_{n}\right) \in T$, and $\mathcal{P}^{d_{2}}$ is a Singleton Set Consisting of the Uniform Distirbution on $\left[-K_{l}, K_{l}\right]^{d_{2}}$.

Mimimax Rate is Lower Bounded by $\Omega\left(n^{-2\left(d_{2}-d_{1}\right) n}\right)$.

- The lower bound below is from Le Cam's lemma with the constructed $\mathcal{P}_{1}^{d_{1}}$ and $\mathcal{P}_{2}^{d_{2}}$.

Proposition
$\inf \sup \mathbb{E}_{P^{(n)}}\left[/\left(\operatorname{dim}_{n}, \operatorname{dim}(P)\right)\right] \gtrsim n^{-2\left(d_{2}-d_{1}\right) n}$. $\operatorname{dim} P \in \mathcal{P}^{d_{1}} \cup \mathcal{P}^{d_{2}}$

Introduction

Upper Bound

Lower Bound

Upper Bound and Lower Bound for General Case

Multinary Classification and $0-1$ Loss are Considered.

$$
R_{n}=\inf _{\operatorname{dim}_{n}} \sup _{P \in \mathcal{P}} \mathbb{E}_{P^{(n)}}\left[\ell\left(\operatorname{dim}_{n}(X), \operatorname{dim}(P)\right)\right]
$$

- Now the manifolds are of any dimensions between 1 and m, so considered distribution set is $\mathcal{P}=\bigcup_{d=1}^{m} \mathcal{P}^{d}$.
- $0-1$ loss function is considered, so for all $x, y \in \mathbb{R}$, $\ell(x, y)=I(x=y)$.

Mimimax Rate is Upper Bounded by $O\left(n^{-\frac{1}{m-1} n}\right)$, and Lower Bounded by $\Omega\left(n^{-2 n}\right)$.

Proposition

$$
n^{-2 n} \lesssim \inf _{\operatorname{dim}_{n} P \in \mathcal{P}} \operatorname{E}_{P^{(n)}}\left[I\left(\operatorname{dim}_{n}, \operatorname{dim}(P)\right)\right] \lesssim n^{-\frac{1}{m-1} n}
$$

Thank you!

[^0]: ${ }^{1}$ http://www.skybluetrades.net/blog/posts/2011/10/30/machine-learning/

[^1]: ${ }^{2}$ https://people.csail.mit.edu/jaffer/Geometry/PSFC

[^2]: 3^{3} http://www.heatonresearch.com/fun/tsp/anneal

