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Introduction
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Manifold Learning Finds an Underlying Manifold to Reduce
Dimension.

1http://www.skybluetrades.net/blog/posts/2011/10/30/machine—|earning/ 3/27



Intrinsic Dimension of a Manifold needs to be Estimated.

» Most manifold learning algorithms require the intrinsic dimension of
the manifold as input.
» Intrinsic dimension is rarely known in advance and therefore has to be

estimated.
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Minimax Rate is of Interest.

» Minimax rate is the risk of an estimator that performs best in the
worst case, as a function of the sample size.

R, = dii[:jn :Lé[%Ep(n) [5 (diAmn(X)v dim(P))}

risk of an estimator

» X =(Xy, -, X,) is drawn from a fixed distribution P, where P is
contained in set of distributions P.
» estimator dim, is any function of the data X.
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Minimax Rate is of Interest.

» Minimax rate is the risk of an estimator that performs best in the
worst case, as a function of the sample size.

R, — d.r:f sup By [é (di“mn(X), dim(P))}

risk of an estimator in the worst case

» X =(Xy, -, X,) is drawn from a fixed distribution P, where P is
contained in set of distributions P.
» estimator dim, is any function of the data X.
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Minimax Rate is of Interest.

» Minimax rate is the risk of an estimator that performs best in the
worst case, as a function of the sample size.

Ro= inf sup Epio [z (dfmn(X), dim(P))}

risk of an estimator that performs best in the worst case

» X =(Xy, -, X,) is drawn from a fixed distribution P, where P is
contained in set of distributions P.
» estimator dim,, is any function of the data X.
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Regularity Conditions on Measures and Conditions on
Distributions and Supporting Manifolds are Assumed.
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Regularity Conditions on Measures and Conditions on
Distributions and Supporting Manifolds are Assumed.
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2https://people.csail.mit.edu/jaffer/Geometry/PSFC
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Regularity Conditions on Measures and Conditions on
Distributions and Supporting Manifolds are Assumed.
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Regularity Conditions on Measures and Conditions on
Distributions and Supporting Manifolds are Assumed.

» P9 denotes set of distributions P with bounded support, bounded
curvature, and bounded density.
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Binary Classification and 0 — 1 loss are Considered.

R, = dii[;fn ;lé?)Ep(n) [f (diAmn(X)a dim(P))]

» We assume that the manifolds are of two possible dimensions, d; and
do, so the considered distribution set is P = P U P,

» 0 — 1 loss function is considered, so for all x,y € R,

Ux,y) =1(x #y).
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Upper Bound
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The Maximum Risk of any chosen Estimator Provides an
Upper Bound on the Minimax Rate.

o = inf sup Epeo ¢ (dima(x), dim(P) )

< sup Epoy [¢ (dimn(x),dim(P))]

the maximum risk of any chosen estimator
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TSP(Travelling Salesman Problem) Path Finds Shortest
Path that Visits Each Points exactly Once.

-

3http://www.heatonresearch.com/fun/tsp/anneal
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Our Estimator estimates Dimension to be d, if di-squared
Length of TSP Generated by the Data is Long.

» When intrinsic dimesion is higher, length of TSP path is likely to be
longer.

dim,(X) = d; <~
n—1

Jdo €S, s.t ZHXU(,-JA) — Xg(,')H%lm <C,
i=1

where C is some constant that depends only on regularity conditions.
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Mimimax Rate is Upper Bounded by O <n_("i_l>n>.

_(9%_
Our estimator has maximum risk of O <n <d1 1>">.

Proposition
Letl <dy <dr <m. Then

inf  sup  Epw [/ (dfm,,,dim(P))] < n_(%_l)n.
dim,pephupd:
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Lower Bound
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Le Cam’'s Lemma provides Lower Bounds based on the

Minimum of Two Densities g1 A g», where g; are in Convex
Hull of P%.

Lemma

Let P be a set of probability measures, and P%, P% < P be such that for
all P € P%, 0(P) = 0; for i = 1,2. For any Q; € co(P;), let g; be density
of Q; with respect to measure v. Then

_ , d(61,6,)
infsup (a0, 0P)] > D2 sup  [1a:) n qa(xlavi).
6 PeP 4 Qi€co(Pd)
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T is Constructed so that for any x = (xg,--+ ,x,) € T,
there exists a d;-dimensional Manifold belonging to the
Model and Passing through xq, - - - , x,.
» T;'s are cyllnder sets in [~ K}, K;]%, and then T is constructed as
T=5, H T;, where the permutation group S, acts on H T;as a

i=1 i=1
coordinate change.
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T is Constructed so that for any x = (xg,--+ ,x,) € T,
there exists a d;-dimensional Manifold belonging to the

Model and Passing through xq, - - - , x,.
» Given x1, -+ ,x, € T (blue points), a manifold in the model (red line)
passes through xq,- -, x,.
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P% is Constructed as Set of Distributions that are
Supported on Manifolds that Passes through xq,- - , x, for
x=(x1, - ,xy) € T, and P% is a Singleton Set Consisting
of the Uniform Distirbution on [—K), Kj]%.
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Mimimax Rate is Lower Bounded by Q2 (n_z(d2_d1)”).

» The lower bound below is from Le Cam’s lemma with the constructed
P& and PE2.

Proposition

inf  sup  Epw[/(dim,, dim(P))] = n~2(d2=d)n,
dimpepdupd
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Upper Bound and Lower Bound for General Case
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Multinary Classification and 0 — 1 Loss are Considered.

R, = dlr:: sup By [ﬁ (di“mn(X), dim(P))}

» Now the manifolds are of any dimensions between 1 and m, so

m
considered distribution set is P = J P7.
d=1

» 0 — 1 loss function is considered, so for all x,y € R,
Ux,y) =1(x=y).
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Mimimax Rate is Upper Bounded by O (n_ml—l"), and
Lower Bounded by Q2 (n_2”) .

Proposition

n2 S inf supBpq [1(dimg, dim(P))] < n- w1
dim,PcP
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Thank you!
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