
Reach

• Medial axis of 𝑀, 𝑀𝑒𝑑(𝑀), is the set of points in ℝ𝑚 that do not have 

unique nearest neighbors on 𝑀.

• The reach of 𝑀, denoted by 𝜏𝑀, is the minimum distance from 𝑀𝑒𝑑(𝑀) to 𝑀: 

𝜏𝑀 = inf𝑥∈𝑀𝑒𝑑 𝑀 ,𝑦∈𝑀 𝑥 − 𝑦
2
.

• The reach 𝜏𝑀 gives maximal offset size of 𝑀 on which the projection is well 

defined.

• The reach 𝜏𝑀 also gives the maximum radius of a ball that you can roll over 

𝑀.

Minimax rate

• Suppose you observe iid data 𝑋 and the set of distributions 𝒫 and loss 

function 𝑙(, ) is fixed, and you are interested in parameter 𝜃.

• Maximum risk of an estimator  𝜃 is the risk that the estimator can make in the 

worst case, i.e.

sup𝑃∈𝒫𝔼𝑃(𝑛) 𝑙
 𝜃 𝑋 , 𝜃(𝑃) .

• Minimax rate is the infimum of a maximum risk over all possible estimators,
 𝜃 i.e.

inf 𝜃sup𝑃∈𝒫𝔼𝑃(𝑛) 𝑙
 𝜃 𝑋 , 𝜃(𝑃) .

• In our case, loss function is 𝑙 𝑎, 𝑏 =
1

𝑎
−

1

𝑏

𝑝
, and the parameter of interest 

is the reach 𝜏𝑃.
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Regularity parameters are crucial to derive approximation properties as well as in implementation. The reach has been proven to play a key role in computational 

geometry. It carries both local and global regularity information, and can be seen as a minimal scale parameter. The goal is to propose an estimator of the reach 𝜏𝑀 of 

a 𝑑-dimensional sub-manifold 𝑀 ⊂ ℝ𝑚 given a random i.i.d. sample 𝑋1, … , 𝑋𝑛 . We give minimax bounds for reach estimation over a class of manifolds satisfying 

natural geometric constraints.

Definition

Abstract

• The reach 𝜏𝑀 of 𝑀 can be characterized as
1

𝜏𝑀
= sup 𝑎,𝑏∈𝑀,𝑎≠𝑏

𝑑(𝑏 − 𝑎, 𝑇𝑎𝑀)

𝑏 − 𝑎
2

2 .

When tangent spaces are known:
• We consider the plugin estimator

1

 𝜏
= sup 1≤𝑖≠𝑗≤𝑛

𝑑(𝑋𝑗 − 𝑋𝑖 , 𝑇𝑋𝑖𝑀)

𝑋𝑗 − 𝑋𝑖
2

2 .

When tangent spaces are unknown:
•  𝑇𝑖 be an estimator of 𝑇𝑋𝑖𝑀, then we consider the plugin estimator

1

 𝜏
= sup 1≤𝑖≠𝑗≤𝑛

𝑑(𝑋𝑗 − 𝑋𝑖 ,  𝑇𝑖)

𝑋𝑗 − 𝑋𝑖
2

2 .

Reach estimators
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Upper bound

• The maximum risk of  𝜏 is 𝑂 𝑛−
4𝑝

5𝑑−1 , i.e. there exists 𝐶(1) that depends only 

on 𝜏min , 𝐿, 𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥 that

sup𝑃∈𝒫𝔼𝑃(𝑛)
1

 𝜏
−

1

𝜏𝑀

𝑝

≤ 𝐶(1)𝑛−
4𝑝

5𝑑−1.

• The minimax rate is also upper bounded by 𝑂 𝑛−
4𝑝

5𝑑−1 , i.e. 

inf 𝜏sup𝑃∈𝒫𝔼𝑃(𝑛)
1

 𝜏
−

1

𝜏𝑀

𝑝

≤ 𝐶(1)𝑛−
4𝑝

5𝑑−1.

Lower bound

• The minimax rate is lower bounded by 𝑂 𝑛−
𝑝

𝑑 , i.e. there exists 𝐶(2) that 

depends only on 𝜏min , 𝐿, 𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥 that

inf 𝜏sup𝑃∈𝒫𝔼𝑃(𝑛)
1

 𝜏
−

1

𝜏𝑀

𝑝

≥ 𝐶(2)𝑛−
𝑝
𝑑 .

Upper bound and Lower bound of Minimax Rate

We consider 𝒫 to be set of distributions with regular conditions:

• The reach 𝜏𝑀 of the support manifold 𝑀 is lower bounded by 𝜏min .

• All the arc-length parametrized geodesic 𝛾 on the support manifold 𝑀 has 𝐿-

Lipscthiz 2nderivatives: for all 𝑡, 𝑠 ∈ ℝ, 𝛾′′ 𝑡 − 𝛾′′ 𝑠 ≤ 𝐿|𝑡 − 𝑠|.

• The probability distribution 𝑃 has density 𝑓 with respect to uniform measure 

on 𝑀 satisfying 𝑓𝑚𝑖𝑛 ≤ 𝑓 𝑥 ≤ 𝑓𝑚𝑎𝑥.

Regularity conditions


