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Abstract

Regularity parameters are crucial to derive approximation properties as well as in implementation. The reach has been proven to play a key role in computational
geometry. It carries both local and global regularity information, and can be seen as a minimal scale parameter. The goal Is to propose an estimator of the reach t,, of

a d-dimensional sub-manifold M < R™ given a random 1.i.d. sample {X1, ...
Definition

natural geometric constraints.
L TM ~:
Med(M) |

* Medial axis of M, Med (M), is the set of points in R™ that do not have
unigue nearest neighbors on M.
* The reach of M, denoted by t,,, IS the minimum distance from Med (M) to M

Reach

Ty = infxEMed(M),yEM“x — YHZ-

* The reach 7, gives maximal offset size of M on which the projection is well
defined.

* The reach 7, also gives the maximum radius of a ball that you can roll over
M.

Minimax rate

« Suppose you observe iid data X and the set of distributions P and loss
function [(, ) 1s fixed, and you are interested in parameter 6.

« Maximum risk of an estimator 8 is the risk that the estimator can make in the
worst case, I.e.

suppepE,m [L(0(X),0(P))].
* Minimax rate is the infimum of a maximum risk over all possible estimators,
6 i.e.
infasuppeprE,m [L(0(X), 8(P))]-
* Inour case, loss functionis l(a, b) = - 1‘29
IS the reach 7p.

s I and the parameter of interest

Regularity conditions

We consider P to be set of distributions with regular conditions:
The reach t,, of the support manifold M is lower bounded by 7, .
All the arc-length parametrized geodesic y on the support manifold M has L-

Lipscthiz 2nderivatives: for all t,s € R, |ly"(t) —y" ()| < L|t — 5.
The probability distribution P has density f with respect to uniform measure
on M satisfying fiin < f(x) < finax

References

H. Federer. Curvature measures. Trans. Amer. Math. Soc., 93, 1959.

nttp://www.stat.cmu.edu/topstat/
nttps://team.inria.fr/geometrica/

D01 W R

, X, }. We give minimax bounds for reach estimation over a class of manifolds satisfying

Reach estimators

* The reach t,, of M can be characterized as
1 dlb —a,T,M)

— = SUP g peM,a=b 5
tm b — al ‘2

When tangent spaces are known:

* We consider the plugin estimator
1 d(X] _Xl"TXiM)
= SUP 1<iz#j<n :

~> |

“Xj—Xi\j

When tangent spaces are unknown:
» T, be an estimator of Tx.M, then we consider the plugin estimator

1 d(X; — X, T)

T

= SUP 1<izj<n >
1x; - x| ,

Upper bound and Lower bound of Minimax Rate

Upper bound
4p
+ The maximum risk of 7 is 0(n"5a-1). i.e. there exists C(V that depends only

ON Tiin, L, fmin’ fmax that

1|7 4p
—| | < cWn"sa-1.

SupPESDIEp(n)

| =

Tm

4p
* The minimax rate Is also upper bounded by O(n_scl—l), l.e.

b 4
L1 < copsia,

infysupperEpon ||
i T Tym

Lower bound

p
» The minimax rate is lower bounded by O (n_E), i.e. there exists C(? that

depends only on tin, L, finin, fmayx that

| S B L
infzsuppepEpm ||z ——| | 2 Cc®n~d.
] T Tym
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