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When analyzing data, we prefer robust features where
features of the underlying manifold can be inferred from
features of finite samples.
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Homology of finite sample is different from homology of
underlying manifold, hence it cannot be directly used for the
inference.

Underlying circle: β0 = 1, β1 = 1
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.
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Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.
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Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.
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Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.
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How can we distinguish statistically significant homological
features from noisy homological features?
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Landscape is a functional summary of the persistent
homology.

Persistent Homology
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Landscape of the underlying manifold can be inferred from
landscape of finite samples.
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Landscape of the underlying manifold can be inferred from
landscape of finite samples.
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Landscape of the underlying manifold can be inferred from
landscape of finite samples.
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Landscape of the underlying manifold can be inferred from
landscape of finite samples.

Circle

(Birth+Death)/2

(D
ea

th
−

B
ir

th
)/

2

0.0 0.4 0.8

−
0.

2
0.

2
0.

6

200 samples

(Birth+Death)/2

(D
ea

th
−

B
ir

th
)/

2

0.0 0.4 0.8
−

0.
2

0.
2

0.
6

15 / 33



How can we statistically quantify the randomness of the
landscape?
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Bottleneck distance gives a metric on the space of the
persistent homology.

Definition
Let D1, D2 be multiset of points. Bottleneck distance is defined as

W∞(D1, D2) = inf
γ

sup
x∈D1

‖x − γ(x)‖∞,

where γ ranges over all bijections from D1 to D2.
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition
Let D1, D2 be multiset of points. Bottleneck distance is defined as

W∞(D1, D2) = inf
γ

sup
x∈D1

‖x − γ(x)‖∞,

where γ ranges over all bijections from D1 to D2.
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Bottleneck distance can be controlled by the corresponding
distance on functions: Stability Theorem.

Theorem
[Edelsbrunner and Harer, 2010][Chazal, de Silva, Glisse, and Oudot,
2012] Let X be finitely triangulable space and f , g : X→ R be two
continuous functions. Let Dgm(f ) and Dgm(g) be corresponding
persistent homologies. Then

W∞(Dgm(f ), Dgm(g)) ≤ ‖f − g‖∞.
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Confidence band for the persistent homology is a random
quantity containing the persistent homology with high
probability.

Let M be a compact manifold, and X = {X1, · · · ,Xn} be n samples. Let
fM and fX be corresponding functions whose persistent homology is of
interest. Given the significance level α ∈ (0, 1), (1− α) confidence band
cn = cn(X ) is a random variable satisfying

P (W∞(Dgm(fM), Dgm(fX )) ≤ cn) ≥ 1− α.
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Confidence band for the persistent homology is a random
quantity containing the persistent homology with high
probability.

Let M be a compact manifold, and X = {X1, · · · ,Xn} be n samples. Let
fM and fX be corresponding functions whose persistent homology is of
interest. Given the significance level α ∈ (0, 1), (1− α) confidence band
cn = cn(X ) is a random variable satisfying

P (W∞(Dgm(fM), Dgm(fX )) ≤ cn) ≥ 1− α.
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Confidence band for the persistent homology can be
obtained by the corresponding confidence band for functions.

From Stability Theorem, P (||fM − fX || ≤ cn) ≥ 1− α implies

P (W∞(Dgm(fM), Dgm(fX )) ≤ cn) ≥ P (||fM − fX ||∞ ≤ cn) ≥ 1− α,

so the confidence band of corresponding functions fM can be used for
confidene band of persistent homologies Dgm(fM).
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Confidence band for the persistent homology can be
computed using the bootstrap algorithm.

The validity of the bootstrap algorithm is proved and used in the
framework of persistent homology.

I [Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, and Singh, 2014]
proved for kernel density estimator,

I [Chazal, Fasy, Lecci, Michel, Rinaldo, and Wasserman, 2014a]
proved for distance to measure and kernel distance.
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Confidence band for the persistent homology can be
computed using the bootstrap algorithm.

1. Given a sample X = {x1, . . . , xn}, compute the kernel density
estimator p̂h.

2. Draw X ∗ = {x∗1 , . . . , x∗n } from X = {x1, . . . , xn} (with replacement),
and compute θ∗ =

√
n||p̂∗h(x)− p̂h(x)||∞, where p̂∗h is the density

estimator computed using X ∗.
3. Repeat the previous step B times to obtain θ∗1 , . . . , θ

∗
B

4. Compute qα = inf
{
q : 1

B

∑B
j=1 I (θ

∗
j ≥ q) ≤ α

}
5. The (1− α) confidence band for E[p̂h] is

[
p̂h − qα√

n
, p̂h + qα√

n

]
.
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∞-landscape distance gives a metric on the space of
landscapes.

Definition
Let D1, D2 be multiset of points, and λ1 , λ2 be corresponding
landscapes. ∞-landscape distance is defined as

Λ∞(D1,D2) = ‖λ1 − λ2‖∞.
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∞-landscape distance can be controlled by the
corresponding distance on functions: Stability Theorem.

Theorem
[Bubenik, 2015] Let f , g : X→ R be two functions, and let Dgm(f ) and
Dgm(g) be corresponding persistent homologies. Then

Λ∞(Dgm(f ), Dgm(g)) ≤ ‖f − g‖∞.
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Confidence band for the landscape can be computed using
the bootstrap algorithm.

I Let λM and λX be landscapes of the manifold M and samples X .
From Stability Theorem, P (||fM − fX || ≤ cn) ≥ 1− α implies

P (λX (t)− cn ≤ λM(t) ≤ λX (t) + cn ∀t) ≥ P (||fM − fX || ≤ cn) ≥ 1−α,

so the confidence band of corresponding functions fM can be used
for confidene band of the landscape λM .
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Confidence band for landscape can be computed using the
bootstrap algorithm.

I Confidence band for landscape can be also computed using
multiplier bootstrap; see [Chazal, Fasy, Lecci, Rinaldo, and
Wasserman, 2014b].
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Thank you!
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