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High dimensional data suffers from the curse of
dimensionality.

1

1[Hastie et al., 2009, Ch2, Figure 2.6]
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The curse of dimensionality is mitigated when there is a low
dimensional geometric structure.

2

2http://www.skybluetrades.net/blog/posts/2011/10/30/machine-learning/
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Geometric structures in the data provide information.

3

3http://www.mpa-garching.mpg.de/galform/virgo/millennium/poster_half.jpg
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Statistic Inference for Geometric Data is explored.

I Minimax Rates for Geometric Parameters of a Manifold
I Minimax Rates for Estimating the Dimension of a Manifold (Kim,

Rinaldo, Wasserman, 2016)
I The Origin of the Reach: Better Understanding Regularity Through

Minimax Estimation Theory (Aamari, Kim, Chazal, Michel, Rinaldo,
Wasserman, 2017)

I Statistical Inference For Homological Features
I Statistical Inference for Cluster Trees (Kim, Chen, Balakrishnan,

Rinaldo, Wasserman, 2016)
I Statistical Inference and Computation for Persistent Homology

I Statistical inference on persistent homology of KDE filtration on rips
complex (Shin, Kim, Rinaldo, Wasserman, 2018?)

I R Package TDA: Statistical Tools for Topological Data Analysis
(Fasy, Kim, Lecci, Maria, Milman, Rouvreau, 2014a)
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A manifold is a low dimensional geometric structure that
locally resembles Euclidean space.

4

4http://www.skybluetrades.net/blog/posts/2011/10/30/machine-learning/
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The maximum risk of an estimator is its worst expected
error.

I the maximum risk of an estimator θ̂n is the worst expected error that
the estimator θ̂n can make.

I

sup
P∈P

EP(n)

[
`
(
θ̂n(X ), θ(P)

)]

I X = (X1, · · · ,Xn) is drawn from a fixed distribution P, where P is
contained in set of distributions P.

I estimator θ̂n is any function of data X .
I The loss function `(·, ·) measures the error of the estimator θ̂n.
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The minimax rate describes the statistical difficulty of
estimating a parameter.

I The minimax rate Rn is the risk of an estimator that performs best
in the worst case, as a function of sample size.

I

Rn = inf
θ̂n

sup
P∈P

EP(n)

[
`
(
θ̂n(X ), θ(P)

)]

I X = (X1, · · · ,Xn) is drawn from a fixed distribution P, where P is
contained in set of distributions P.

I estimator θ̂n is any function of data X .
I The loss function `(·, ·) measures the error of the estimator θ̂n.
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We measure the statistical difficulty of estimating geometric
parameters of a manifold by their minimax rate.

I Minimax Rates for Estimating the Dimension of a Manifold (Kim,
Rinaldo, Wasserman, 2016)

I The Origin of the Reach: Better Understanding Regularity Through
Minimax Estimation Theory (Aamari, Kim, Chazal, Michel, Rinaldo,
Wasserman, 2017)
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Manifold learning finds an underlying manifold to reduce
dimension.
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The intrinsic dimension of a manifold needs to be estimated.

I Most manifold learning algorithms require the intrinsic dimension of
the manifold as input.

I The intrinsic dimension is rarely known in advance and therefore has
to be estimated.
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Minimax rate for estimating the dimension

I

Rn = inf
ˆdimn

sup
P∈P

EP(n)

[
1
(

ˆdimn(X ) 6= dim(P)
)]

I X = (X1, · · · ,Xn) is drawn from a fixed distribution P, where P is
contained in set of distributions P.

I estimator ˆdimn is any function of data X .
I 0− 1 loss function is considered, so for all x , y ∈ R,
`(x , y) = 1(x 6= y).
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Minimax rate for estimating the dimension

Theorem
(Proposition 28 and 29)

n−2n . inf
ˆdimn

sup
P∈P

EP(n)

[
1
(

ˆdimn 6= dim(P)
)]

. n−
1

m−1 n.
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The reach is the maximum radius of a ball that can roll over
the manifold.

Definition
The reach of M, denoted by τ(M), can be defined as

τ(M) = inf
a 6=b∈M

‖b − a‖22
2d(b − a, TaM)

,

where TaM is the tangent space of M at a.

τ(M)

M M

τ(M)
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The reach is a regularity parameter in many geometrical
inference problem.

I The reach is a key paramter in:
I Dimension estimation
I Homology inference
I Volume estimation
I Manifold clustering
I Diffusion maps
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Minimax rate for estimating the reach

I

Rn = inf
τ̂n

sup
P∈P

EP(n)

[∣∣∣∣
1

τ(P)
− 1
τ̂n(X )

∣∣∣∣
q]

I X = (X1, · · · ,Xn) is drawn from a fixed distribution P, where P is
contained in set of distributions P.

I estimator τ̂n is any function of data X .
I inverse lq loss function is considered, so for all x , y ∈ R,
`(x , y) =

∣∣∣ 1
x
− 1

y

∣∣∣q.
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An estimator of the reach

The reach of M is

τ(M) = inf
a 6=b∈M

‖b − a‖22
2d(b − a, TaM)

.

Definition
Given observation X = (X1, . . . ,Xn), we estimate the reach as

τ̂n(X ) = inf
1≤i 6=j≤n

‖Xj − Xi‖22
2d(Xj − Xi , TXiM)

.
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Minimax rate for estimating the reach

Theorem
(Theorem 45 and Proposition 50)

n−
q
d . inf

τ̂n
sup
P∈P

EP(n)

[∣∣∣∣
1

τ(P)
− 1
τ̂n

∣∣∣∣
q]

. n−
2q

3d−1 .
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Geometric holes in the data provide information.

24 / 62



The number of holes is used to summarize geometrical
features.

I Geometrical objects :
I A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W,

X, Y, Z,

I , , , , .5

I The number of holes of different dimensions is considered.

1. β0 =# of connected components

2. β1 =# of loops (holes inside 1-dim sphere)

3. β2 =# of voids (holes inside 2-dim sphere) : if dim ≥ 3

5Professor Valerie Ventura
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Example : Objects are classified by homologies.

1. β0 =# of connected components

2. β1 =# of loops

β0 \ β1 0 1 2

C, G, I, J, L, M,

1 N, S, U, V, W, Z, A, R, D, O, , P, Q B
E, F, T, Y, H, K, X

2

3 ,
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Statistical inference for homological features.

I Statistical Inference for Cluster Trees (Kim, Chen, Balakrishnan,
Rinaldo, Wasserman, 2016)
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The cluster tree is the hierarchy of the high density clusters.

Definition
For a density function p, its cluster tree Tp is a function where Tp(λ) is
the set of connected components of the upper level set {x : p(x) ≥ λ}.

p(x)

x

p(x)

x
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A confidence set helps denoising the empirical tree.
I An asymptotic 1− α confidence set Ĉα is a collection of trees with

the property that

P(Tp ∈ Ĉα) = 1− α+ o(1).

Ring data, alpha = 0.05
la

m
bd

a

0.0 0.2 0.4 0.6 0.8 1.0

0
0.

20
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0.
27

2
0.

52
9

−

−
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We use the bootstrap to compute 1− α confidence set Ĉα.

I We let Tp̂h be the cluster tree from the kernel density estimator p̂h,
where

p̂h(x) =
1

nhd

n∑

i=1

K

(
x − Xi

h

)
,

and the confidence set as the ball centered at Tp̂h and radius tα, i.e.

Ĉα = {T : d∞(T ,Tp̂h) ≤ tα} .

Theorem
(Theorem 57) Above confidence set Ĉα satisfies

P
(
Th ∈ Ĉα

)
= 1− α+ O



(
log7 n

nhm

)1/6

 .
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The pruned trees according to the confidence set recover the
actual cluster trees.

Ring data, alpha = 0.05
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Mickey mouse data, alpha = 0.05
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Yingyang data, alpha = 0.05
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Homology of finite sample is different from homology of
underlying manifold, hence it cannot be directly used for the
inference.

I When analyzing data, we prefer robust features where features of the
underlying manifold can be inferred from features of finite samples.

I Homology is not robust:

Underlying circle: β0 = 1, β1 = 1
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.
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Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.
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Confidence band for persistent homology separates
homological signal from homological noise.
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Statistical inference for persistent homology.

I Persistent homology of KDE filtration on rips complex (Shin, Kim,
Rinaldo, Wasserman, 2018?)

I R Package TDA: Statistical Tools for Topological Data Analysis
(Fasy, Kim, Lecci, Maria, Milman, Rouvreau, 2014a)
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Computing a confidence band for the persistent homology
incurs computing on a grid of points, which is infeasible in
high dimensional space.
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Computing the persistent homology of density function on
data points reduces computational complexity.
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How can we compute a confidence band for the persistent
homology with computation on data points?

I (Shin, Kim, Rinaldo, Wasserman, 2018?) : extending work from Fasy
et al. [2014b], Bobrowski et al. [2014], Chazal et al. [2011].
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We rely on the kernel density estimator to extract
topological information of the underlying distribution.

I The kernel density estimator is

p̂h(x) =
1

nhd

n∑

i=1

K

(
x − Xi

h

)
.
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We are considering the upper level set of the average kernel
density estimator on the support.

I Let X1, . . . ,Xn ∼ P, then the average kernel density estimator is

ph(x) = E [p̂h(x)] =
1
hd

E
[
K

(
x − X

h

)]
.

I We are considering the upper level sets of the average kernel density
estimator

{DL}L>0 , where DL := {x ∈ supp(P) : ph(x) ≥ L} .
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We are considering the upper level set of the average kernel
density estimator on the support.

I We are considering the upper level sets of the average KDE

{DL}L>0 , where DL := {x ∈ supp(P) : ph(x) ≥ L} .
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We are targeting the persistent homology of the upper level
set of the average kernel density estimator on the support.

I We are considering the upper level sets of the average KDE

{DL}L>0 , where DL := {x ∈ supp(P) : ph(x) ≥ L} ,

and targeting its persistent homology PH
supp(P)
∗ (ph).

46 / 62



We use the Rips complex to estimate the target persistent
homology.

I For X ⊂ Rm and r > 0, the Rips complex R(X , r) is defined as

R(X , r) =
{
[Xi1 , . . . ,Xik ] : d(Xij ,Xil ) < 2r , 1 ≤ ∀j 6= l ≤ k, k = 1, . . . , n

}
.

47 / 62



We estimate the target level set by considering the Rips
complex generated from the level set of the KDE.

I For X ⊂ Rm and r > 0, the Rips complex R(X , r) is defined as

R(X , r) =
{
[Xi1 , . . . ,Xik ] : d(Xij ,Xil ) < 2r , 1 ≤ ∀j 6= l ≤ k, k = 1, . . . , n

}
.

I The KDE (kernel density estimator) is

p̂h(x) =
1

nhd

n∑

i=1

K

(
x − Xi

h

)
.

I For Xn = {X1, . . . ,Xn}, we consider the Rips complex generated
from the level set of the KDE

{
R
(
X p̂h

n,L, r
)}

L>0
, where X p̂h

n,L := {Xi ∈ Xn : p̂h(Xi ) ≥ L} .
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We estimate the target level set by considering the Rips
complex generated from the level set of the KDE.

I For Xn = {X1, . . . ,Xn}, we estimate the target level set by the level
sets of the KDE on Rips complexes,

{
R
(
X p̂h

n,L, r
)}

L>0
, where X p̂h

n,L := {Xi ∈ Xn : p̂h(Xi ) ≥ L} .
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We estimate the target persistent homology by the
persistent homology of the KDE filtration on Rips
complexes.

I We estimate the target persistent homology by the persistent
homology of the level sets of the KDE on Rips complexes,

{
R
(
X p̂h

n,L, r
)}

L>0
, where X p̂h

n,L = {Xi ∈ Xn : p̂h(Xi ) ≥ L} .

and denote the persistent homology as PHR
∗ (p̂h, r).
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We estimate the target level set by Rips complexes from the
KDE level sets.

I We approximate the target level set

{DL}L>0 , where DL := {x ∈ supp(P) : ph(x) ≥ L} ,
by the level sets of the KDE on Rips complexes,

{
R
(
X p̂h

n,L, r
)}

L>0
, where X p̂h

n,L = {Xi ∈ Xn : p̂h(Xi ) ≥ L} .
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We estimate the target persistent homology by the
persistent homology of the KDE filtration on Rips
complexes.

I We estimate the target persistent homology

PH
supp(P)
∗ (ph),

by the persistent homology of the KDE filtration on Rips complexes,

PHR
∗ (p̂h, r).
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The persistent homology of the KDE filtration on Rips
complexes is consistent.

Theorem
(Theorem 74)

dB
(
PHR
∗ (p̂hn , rn),PH

supp(P)
∗ (phn)

)
= OP

(√
log(1/hn)

nhdn
+ ‖rn‖∞

)
.
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Confidence set

I An asymptotic 1− α confidence set Ĉα is a random set of persistent
homologies satisfying

P(PHsupp(P)
∗ (phn) ∈ Ĉα) ≥ 1− α+ o(1).
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Confidence set for the persistent homology of the KDE
filtration.

I We let the confidence set as the ball centered at PHR
∗ (p̂hn , rn) and

radius b̂α, i.e.

Ĉα =
{
P :, dB

(
P,PHR

∗ (p̂hn , rn)
)
≤ b̂α

}
.

This is a valid confidence set by the following theorem.

Theorem
(Theorem 78)

P
(
PH

supp(P)
∗ (phn) ∈ Ĉα

)
≥ 1− α+ o(1).
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R Package TDA provides an R interface for C++ libraries
for Topological Data Analysis.

I website:
https://cran.r-project.org/web/packages/TDA/index.html

I Author: Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clément
Maria, David Milman, and Vincent Rouvreau.

I R is a programming language for statistical computing and graphics.
I R has short development time, while C/C++ has short execution

time.
I R package TDA provides an R interface for C++ library

GUDHI/Dionysus/PHAT, which are for Topological Data Analysis.

57 / 62
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R Package TDA provides an R interface for C++ libraries
for Topological Data Analysis.

I # of downloads (2014-08-18 - 2018-09-19) : 21820
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition
Let D1, D2 be multiset of points. Bottleneck distance is defined as

dB(D1, D2) = inf
γ

sup
x∈D1

‖x − γ(x)‖∞,

where γ ranges over all bijections from D1 to D2.
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Confidence band for the persistent homology is a random
quantity containing the persistent homology with high
probability.

Let M be a compact manifold, and X = {X1, · · · ,Xn} be n samples. Let
fM and fX be corresponding functions whose persistent homology is of
interest. Given the significance level α ∈ (0, 1), (1− α) confidence band
cn = cn(X ) is a random variable satisfying

P (dB(Dgm(fM), Dgm(fX )) ≤ cn) ≥ 1− α.

Circle
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Confidence band for the persistent homology can be
computed using the bootstrap algorithm.

1. Given a sample X = {x1, . . . , xn}, compute the kernel density
estimator p̂h.

2. Draw X ∗ = {x∗1 , . . . , x∗n } from X = {x1, . . . , xn} (with replacement),
and compute θ∗ =

√
n||p̂∗h(x)− p̂h(x)||∞, where p̂∗h is the density

estimator computed using X ∗.
3. Repeat the previous step B times to obtain θ∗1 , . . . , θ

∗
B

4. Compute qα = inf
{
q : 1

B

∑B
j=1 I (θ

∗
j ≥ q) ≤ α

}

5. The (1− α) confidence band for E[p̂h] is
[
p̂h − qα√

n
, p̂h +

qα√
n

]
.
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The supporting manifold M is assumed to be bounded.

M ⊂ I := [−KI ,KI ]
m ⊂ Rm with KI ∈ (0,∞)

9 / 65



The reach is assumed to be lower bounded to avoid an
arbitrarily complicated manifold.

I P is a set of distributions P that is supported on a bounded manifold
M, with its reach τ(M) ≥ τg , and with other regularity assumptions.

πM (x)

x

≤ τg

M

10 / 65



The reach is assumed to be lower bounded to avoid an
arbitrarily complicated manifold.

I M is of local reach ≥ τ`, if for all points p ∈ M, there exists a
neighborhood Up ⊂ M such that Up is of reach ≥ τ`.

11 / 65



Density is bounded away from ∞ with respect to the
uniform measure.

I Distribution P is absolutely continuous to induced Lebesgue measure
volM , and dP

dvolM
≤ Kp for fixed Kp.

I This implies that the distribution on the manifold is of essential
dimension d .

I Pd
κl ,κg ,Kp

denotes set of distributions P that is supported on
d-dimensional manifold of (global) reach ≥ τg , local reach ≥ τ`, and
density is bounded by Kp.

12 / 65



Stability and Statistical Inference for Persistent Homology

Minimax Rates for Estimating the Dimension of a Manifold
Regularity conditions
Upper Bound
Lower Bound
Upper Bound and Lower Bound for General Case

The Origin of the Reach: Better Understanding Regularity Through
Minimax Estimation Theory

Reach and its Geometry
Reach estimator and its analysis
Minimax Estimates

Statistical Inference for Cluster Trees

Reference

13 / 65



The Maximum Risk of any chosen Estimator Provides an
Upper Bound on the Minimax Rate.

Rn = inf
ˆdimn

sup
P∈P

EP(n)

[
`
(

ˆdimn(X ), dim(P)
)]

≤ sup
P∈P

EP(n)

[
`
(

ˆdimn(X ), dim(P)
)]

︸ ︷︷ ︸
the maximum risk of any chosen estimator

14 / 65



TSP(Travelling Salesman Problem) Path Finds Shortest
Path that Visits Each Points exactly Once.

6

6http://www.heatonresearch.com/fun/tsp/anneal
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Our Estimator estimates Dimension to be d2 if d1-squared
Length of TSP Generated by the Data is Long.

I When intrinsic dimesion is higher, length of TSP path is likely to be
longer.

I

ˆdimn(X ) = d1 ⇐⇒

∃σ ∈ Sn s.t
n−1∑

i=1

‖Xσ(i+1) − Xσ(i)‖d1
Rm ≤ C ,

where C is some constant that depends only on KI , d1, and m.
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Our Estimator has Maximum Risk of O
(
n
−
(

d2
d1
−1
)
n
)
.

I Our estimator makes error with probability at most O
(
n−(

d2
d1
−1)n

)

if intrinsic dimension is d2.
I Our estimator is always correct when the intrinsic dimension is d1.
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Our Estimator makes Error with Probability at most

O

(
n
−
(

d2
d1
−1
)
n
)

if Intrinsic Dimension is d2.

I Based on the following lemma:

Lemma
(Lemma 18) Let X1, · · · ,Xn ∼ P ∈ Pd2

κl ,κg ,Kp
, then

P(n)

[
n−1∑

i=1

‖Xi+1 − Xi‖d1 ≤ L

]
. n−

d2
d1

n.
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Our Estimator is always Correct when the Intrinsic
Dimension is d1.

I Based on following lemma:

Lemma
(Lemma 19) Let M be a d1-dimensional manifold with global reach ≥ τg
and local reach ≥ τ`, and X1, · · · ,Xn ∈ M. Then there exists C which
depends only on m, d1 and KI , and there exists σ ∈ Sn such that

n−1∑

i=1

‖Xσ(i+1) − Xσ(i)‖d1
Rm ≤ C .
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Our estimator is always correct when the intrinsic dimension
is d1.

n−1∑

i=1

‖Xσ(i+1) − Xσ(i)‖d1
Rm ≤ C .

I When d1 = 1 so that the manifold is a curve, length of TSP path is
bounded by length of curve volM(M).

Xσ(1)

Xσ(2)

Xσ(3)

Xσ(n−1)

Xσ(n)

. . .

Y1

Y2

Yn−1

∑
Yi ≤ volM (M)

M

Xσ(n−2)

Yn−2

I Global reach≥ τg implies volM(M) is bounded.
20 / 65



Our estimator is always correct when the intrinsic dimension
is d1.

n−1∑

i=1

‖Xσ(i+1) − Xσ(i)‖d1
Rm ≤ C .

I When d1 > 1, Several conditions implied by regularity conditions
combined with Hölder continuity of d1-dimensional space-filling
curve is used.
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Our estimator is always correct when the intrinsic dimension
is d1.

n−1∑

i=1

‖Xσ(i+1) − Xσ(i)‖d1
Rm ≤ C .

I When d1 > 1, Several conditions implied by regularity conditions
combined with Hölder continuity of d1-dimensional space-filling
curve is used.

Lemma
(Lemma 85, Space-filling curve) There exists surjective map
ψd : R→ Rd which is Hölder continuous of order 1/d , i.e.

0 ≤ ∀s, t ≤ 1, ‖ψd(s)− ψd(t)‖Rd ≤ 2
√
d + 3|s − t|1/d .

22 / 65



Mimimax rate is upper bounded by O

(
n
−
(

d2
d1
−1
)
n
)
.

Proposition
(Proposition 21) Let 1 ≤ d1 < d2 ≤ m. Then

inf
ˆdimn

sup
P∈Pd1∪Pd2

EP(n)

[
l
(

ˆdimn, dim(P)
)]

. n−(
d2
d1
−1)n.
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A subset T ⊂ [−KI ,KI ]
n and set of distributions Pd1

1 , Pd2
2

are found so that, whenever X = (X1, · · · ,Xn) ∈ T , we
cannot distinguish two models.

I The lower bound measures how hard it is to tell whether the data
come from a d1 or d2 -dimensional manifold.

I T , Pd1
1 and Pd2

2 are linked to the lower bound by using Le Cam’s
lemma.

25 / 65



Le Cam’s Lemma provides lower bounds based on the
minimum of two densities q1 ∧ q2, where q1, q2 are in
convex hull of Pd1

1 and convex hull of Pd2
2 , respectively.

Lemma
(Lemma 22, Le Cam’s Lemma) Let P be a set of probability measures,
and Pd1 ,Pd2 ⊂ P be such that for all P ∈ Pdi , θ(P) = θi for i = 1, 2.
For any Qi ∈ co(Pi ), let qi be density of Qi with respect to measure ν.
Then

inf
θ̂
sup
P∈P

EP [d(θ̂, θ(P))] ≥
d(θ1, θ2)

4
sup

Qi∈co(Pdi )

∫
[q1(x) ∧ q2(x)]dν(x).

26 / 65



T is constructed so that for any x = (x1, · · · , xn) ∈ T ,
there exists a d1-dimensional manifold that satisfies
regularity conditions and passes through x1, · · · , xn.

I Ti ’s are cylinder sets in [−KI ,KI ]
d2 , and then T is constructed as

T = Sn
n∏

i=1
Ti , where the permutation group Sn acts on

n∏
i=1

Ti as a

coordinate change.

T1 T2

T4 T3

T5 T6

T8 T7

τ`

2KI

2KI
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T is constructed so that for any x = (x1, · · · , xn) ∈ T ,
there exists a d1-dimensional manifold that satisfies
regularity conditions and passes through x1, · · · , xn.

I Given x1, · · · , xn ∈ T (blue points), manifold of global reach ≥ τg
and local reach ≥ τ` (red line) passes through x1, · · · , xn.

T1 T2

x4

x1

x6

x2

x3

x5

x7x8
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Pd1
1 is constructed as set of distributions that are supported

on manifolds that passes through x1, · · · , xn for
x = (x1, · · · , xn) ∈ T , and Pd2

2 is a singleton set consisting
of the uniform distirbution on [−KI ,KI ]

d2.

29 / 65



If X ∈ T , it is hard to determine whether X is sampled
from distribution P in either Pd1

1 or Pd2
2 .

I There exists Q1 ∈ co(Pd1
1 ) and Q2 ∈ co(Pd2

2 ) such that
q1(x) ≥ Cq2(x) for every x ∈ T with C < 1.

I Then q1(x) ∧ q2(x) ≥ Cq2(x) if x ∈ T , so C
∫
T
q2(x)dx can serve

as lower bound of minimax rate.
I Based on following claim:

Claim
(Claim 25) Let T = Sn

n∏
i=1

Ti . Then for all x ∈ intT , there exists C > 0

that depends only on κl , KI , and rx > 0 such that for all r < rx ,

Q1 (B(xi , r)) ≥ CQ2 (B(xi , r)) .

30 / 65



Mimimax rate is lower bounded by Ω
(
n−2(d2−d1)n

)
.

I Lower bound below is now combination of Le Cam’s lemma,
constructions of T , Pd1

1 , Pd2
2 , and claim.

Proposition
(Proposition 26)

inf
ˆdim

sup
P∈Pd1∪Pd2

EP(n) [l( ˆdimn, dim(P))] & n−2(d2−d1)n.
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Multinary Classification and 0− 1 Loss are Considered.

I

Rn = inf
ˆdimn

sup
P∈P

EP(n)

[
`
(

ˆdimn(X ), dim(P)
)]

I Now the manifolds are of any dimensions between 1 and m, so

considered distribution set is P =
m⋃

d=1
Pd .

I 0− 1 loss function is considered, so for all x , y ∈ R,
`(x , y) = I (x = y).
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Mimimax Rate is Upper Bounded by O
(
n−

1
m−1n

)
, and

Lower Bounded by Ω
(
n−2n

)
.

Proposition
(Proposition 28 and 29)

n−2n . inf
ˆdimn

sup
P∈P

EP(n)

[
l
(

ˆdimn, dim(P)
)]

. n−
1

m−1 n.
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The medial axis of a set M is the set of points that have at
least two nearest neighbors on the set M .

I

Med(M) = {z ∈ Rm : there exists p 6= q ∈ M with
‖p − z‖ = ‖q − z‖ = d(z ,M)}.

τM

Med(M)

M
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The reach of M , denoted by τM , is the minimum distance
from Med(M) to M .

I

τM = inf
x∈Med(M),y∈M

‖x − y‖ .

τM

Med(M)

M
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The reach τM gives the maximum offset size of M on which
the projection is well defined.

I

τM = inf
x∈Med(M),y∈M

‖x − y‖ .

τM

Med(M)

M
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The reach τM gives the maximum radius of a ball that you
can roll over M .

I When M ⊂ Rm is a manifold,

τM = inf
q2 6=q1∈M

‖q2 − q1‖2
2d(q2 − q1,Tq1M)

.

M

q1 + Tq1M

d (q2 − q1, Tq1M)

‖q2 − q1‖‖q2−q1‖2

2d(q2−q1,Tq1
M)

C

q2

q1
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The reach τM gives the maximum radius of a ball that you
can roll over M .

I When M ⊂ Rm is a manifold,

τM = inf
q2 6=q1∈M

‖q2 − q1‖2
2d(q2 − q1,Tq1M)

.

τM
M

41 / 65



The bottleneck is a geometric structure where the manifold
is nearly self-intersecting.

Definition
(Definition 34) A pair of points (q1, q2) in M is said to be a bottleneck of
M if there exists z0 ∈ Med(M) such that q1, q2 ∈ B(z0, τM) and
‖q1 − q2‖ = 2τM .

q1

Med(M)

B(z0, τM )

M

‖q1 − q2‖ = 2τM

q2
z0
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The reach is attained either from the bottleneck (global
case) or the area of high curvature (local case).

Theorem
(Theorem 37) At least one of the following two assertions holds:

I (Global Case) M has a bottleneck (q1, q2) ∈ M2.
I (Local case) There exists q0 ∈ M and an arc-length parametrized γ0

such that γ0(0) = q0 and ‖γ′′0 (0)‖ = 1
τM

.

q1

Med(M)

B(z0, τM )

M

‖q1 − q2‖ = 2τM

q2
z0

q0

z0

τM

B(z0, τM )

Med(M)M
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The reach τM gives the maximum radius of a ball that you
can roll over M .

I When M ⊂ Rm is a manifold,

τM = inf
q 6=p∈M

‖q − p‖2
2d(q − p,TpM)

.

M

q1 + Tq1M

d (q2 − q1, Tq1M)

‖q2 − q1‖‖q2−q1‖2

2d(q2−q1,Tq1
M)

C

q2

q1
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We define the reach estimator τ̂ as the maximum radius of a
ball that you can roll over the point cloud.

I Let X = {x1, . . . , xn} be a finite point cloud, then the reach
estimator τ̂ is a plugin estimator as

τ̂(X ) = inf
xi 6=xj∈X

‖xj − xi‖2
2d(xj − xi ,TxiM)

.

M

q1 + Tq1M

d (q2 − q1, Tq1M)

‖q2 − q1‖‖q2−q1‖2

2d(q2−q1,Tq1
M)

C

q2

q1
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The statistical efficiency of the reach estimator τ̂ is analyzed
through its risk.

I The risk of the estimator τ̂ is the expected loss the estimator.

EP(n) [` (τ̂(X ), τM)] .

I X = {X1, . . . ,Xn} is drawn from a fixed distribution P with its
support M.

I The loss function used is `(τ, τ ′) =
∣∣ 1
τ
− 1

τ ′

∣∣p, p ≥ 1.
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The risk of the reach estimator τ̂ is analyzed.

I The risk of the estimator τ̂ is the expected loss the estimator

EP(n)

[∣∣∣∣
1
τM
− 1
τ̂(X )

∣∣∣∣
p]
.

I X = {X1, . . . ,Xn} is drawn from a fixed distribution P with its
support M.

I The loss function used is `(τ, τ ′) =
∣∣ 1
τ
− 1

τ ′

∣∣p, p ≥ 1.
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The reach estimator has the risk of O
(
n−

2p
3d−1

)
.

I The reach estimator has the risk of O
(
n−

p
d

)
for the global case.

I The reach estimator has the risk of O
(
n−

2p
3d−1

)
for the local case.

q1

Med(M)

B(z0, τM )

M

‖q1 − q2‖ = 2τM

q2
z0

q0

z0

τM

B(z0, τM )

Med(M)M
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The reach estimator has the maximum risk of O
(
n−

p
d

)
for

the global case.
Proposition
(Proposition 40) Assume that the support M has a bottleneck. Then,

EPn

[∣∣∣∣
1
τM
− 1
τ̂(X )

∣∣∣∣
p]

. n−
p
d .

q1

Med(M)

B(z0, τM )

M

‖q1 − q2‖ = 2τM

q2
z0
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The reach estimator has the maximum risk of O
(
n−

2p
3d−1

)

for the local case.
Proposition
(Proposition 44) Suppose there exists q0 ∈ M and a geodesic γ0 with
γ0(0) = q0 and ‖γ′′0 (0)‖ = 1

τM
. Then,

EPn

[∣∣∣∣
1
τM
− 1
τ̂(X )

∣∣∣∣
p]

. n−
2p

3d−1 .

q0

z0

τM

B(z0, τM )

Med(M)M
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The statistical difficulty of the reach estimation problem is
analyzed by the minimax rate.

I Minimax rate is the risk of an estimator that performs best in the
worst case, as a function of sample size.

I

Rn = inf
τ̂n

sup
P∈P

EPn [` (τ̂n(X ), τM)] .

I X = {X1, . . . ,Xn} is drawn from a fixed distribution P with its
support M, where P is contained in set of distributions P.

I An estimator τ̂n is any function of data X .
I The loss function used is `(τ, τ ′) =

∣∣ 1
τ
− 1

τ ′

∣∣p, p ≥ 1.
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The statistical difficulty of the reach estimation problem is
analyzed by the minimax rate.

I Minimax rate is the risk of an estimator that performs best in the
worst case, as a function of sample size.

I

Rn = inf
τ̂n

sup
P∈P

EPn

[∣∣∣∣
1
τM
− 1
τ̂n(X )

∣∣∣∣
p]
.

I X = {X1, . . . ,Xn} is drawn from a fixed distribution P with its
support M, where P is contained in set of distributions P.

I An estimator τ̂n is any function of data X .
I The loss function used is `(τ, τ ′) =

∣∣ 1
τ
− 1

τ ′

∣∣p, p ≥ 1.
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The maximum risk of our estimator provides an upper
bound on the minimax rate.

Rn = inf
τ̂n

sup
P∈P

EPn

[∣∣∣∣
1
τM
− 1
τ̂n(X )

∣∣∣∣
p]

≤ sup
P∈P

EPn

[∣∣∣∣
1
τM
− 1
τ̂(X )

∣∣∣∣
p]

︸ ︷︷ ︸
the maximum risk of our estimator
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Minimax rate is upper bounded by O
(
n−

2p
3d−1

)
.

Theorem
(Theorem 45)

inf
τ̂n

sup
P∈P

EPn

[∣∣∣∣
1
τM
− 1
τ̂n

∣∣∣∣
p]

. n−
2p

3d−1 .
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Le Cam’s lemma provides a lower bound based on the reach
difference and the statistical difference of two distributions.

I Total variance distance between two distributions is defined as

TV (P,P ′) = sup
A∈B(RD )

|P(A)− P ′(A)| .

Lemma
(Lemma 46) Let P,P ′ ∈ P with respective supports M and M ′. Then

inf
τ̂n

sup
P∈P

EPn

[∣∣∣∣
1
τM
− 1
τ̂n

∣∣∣∣
p]

&

∣∣∣∣
1
τM
− 1
τM′

∣∣∣∣
p

(1− TV (P,P ′))
2n
.
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Two distributions P , P ′ are found so that their reaches differ
but they are statistically difficult to distinguish.

I

inf
τ̂n

sup
P∈P

EPn

[∣∣∣∣
1
τM
− 1
τ̂n

∣∣∣∣
p]

&

∣∣∣∣
1
τM
− 1
τM′

∣∣∣∣
p

(1− TV (P,P ′))
2n
.

I The lower bound measures how hard it is to tell whether the data is
from distributions with different reaches.

I P and P ′ are found so that
∣∣∣ 1
τM
− 1

τM′

∣∣∣
p

is large while

(1− TV (P,P ′))2n is small.
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P is a distribution supported on a sphere while P ′ is a
distribution supported on a bumped sphere.

M ′

M
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Mimimax rate is lower bounded by Ω
(
n−

p
d

)
.

Proposition
(Proposition 50)

inf
τ̂n

sup
P∈P

EPn

[∣∣∣∣
1
τM
− 1
τ̂n

∣∣∣∣
p]

& n−
p
d .
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We can use `∞ metric to measure a distance between trees.

Definition
The l∞ metric between trees are defined as

d∞(Tp,Tq) = sup |p(x)− q(x)| .
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Pruning finds the simpler trees that are in the confidence set.

I We propose two pruning schemes to find trees that are simpler the
empirical tree Tp̂h and are in the fconfidence set.

I Pruning only leaves: remove all leaves of length less than 2tα.
I Pruning leaves and internal branches: iteratively remove all branches

of cumulative length less than 2tα.

L1

L2

L3 L4

L5 L6

E1

E2

E3

E5

E4
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